Nanoscale Measurement of Stress and Strain by Quantitative High-Resolution Electron Microscopy

Article Preview

Abstract:

The geometric phase technique (GPA) for measuring the distortion of crystalline lattices from high-resolution electron microscopy (HRTEM) images will be described. The method is based on the calculation of the “local” Fourier components of the HRTEM image by filtering in Fourier space. The method will be illustrated with a study of an edge dislocation in silicon where displacements have been measured to an accuracy of 3 pm at nanometre resolution as compared with anisotropic elastic theory calculations. The different components of the strain tensor will be mapped out in the vicinity of the dislocation core and compared with theory. The accuracy is of the order of 0.5% for strain and 0.1° for rigid-body rotations. Using bulk elastic constants for silicon, the stress field is determined to 0.5 GPa at nanometre spatial resolution. Accuracy and the spatial resolution of the technique will be discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-44

Citation:

Online since:

April 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.J. Wood, W.M. Stobbs and D.J. Smith: Philos. Mag. A Vol. 50 (1985), p.375.

Google Scholar

[2] R. Bierwolf, M. Hohenstein, F. Phillip, O. Brandt, G.E. Crook, G. and K. Ploog : Ultramicroscopy Vol. 49 (1993), p.273.

DOI: 10.1016/0304-3991(93)90234-o

Google Scholar

[3] M.J. Hÿtch, E. Snoeck and R. Kilaas: Ultramicroscopy Vol. 74 (1998), p.131.

Google Scholar

[4] S. Kret, P. Ruterana, A. Rosenauer and D. Gerthsen: Phys. Stat. Sol. (b) Vol. 227 (2001), p.247.

DOI: 10.1002/1521-3951(200109)227:1<247::aid-pssb247>3.0.co;2-f

Google Scholar

[5] M.J. Hÿtch, J-L. Putaux and J. -M. Pénisson: Nature Vol. 423 (2003), p.270.

Google Scholar

[6] C.L. Johnson, M.J. Hÿtch and P. Buseck: American Mineralogist (2004) in press.

Google Scholar

[7] M.J. Hÿtch, Microsc. Microanal. Microstruct. Vol. 8 (1997), p.41.

Google Scholar

[8] P.B. Hirsch, A. Howie and M.J. Whelan: Philos. Trans. of the Royal Society of London Series A, Vol. 252 (1960), p.499.

Google Scholar

[9] J.P. Hirth and J. Lothe: Theory of Dislocations (John Wiley and Sons, New York 1982).

Google Scholar

[10] M.J. Hÿtch and T. Plamann: Ultramicroscopy Vol. 87 (2001), p.199.

Google Scholar

[11] M.M.J. Treacy, J.M. Gibson and A. Howie: Philos. Mag. A Vol. 51 (1985), p.389.

Google Scholar

[12] K. Tillmann, M. Lentzen and R. Rosenfeld: Ultramicroscopy Vol. 83 (2000), p.111.

Google Scholar

[13] M. Haider, H. Rose, S. Uhlemann, E. Schwan, B. Kabius and K. Urban: Ultramicroscopy Vol. 75 (1998), p.53.

DOI: 10.1016/s0304-3991(98)00048-5

Google Scholar

[14] J.R. Jinschek, C. Kisielowski, T. Radetic, U. Dahmen, M. Lentzen, A. Thust and K. Urban: Mat. Res. Soc. Symp. Proc. Vol. 727 (2002) R1. 3. 1.

DOI: 10.1557/proc-727-r1.3

Google Scholar

[15] P. Dłeżewski, G. Maciejewski, G. Jurczak, S. Kret and J. -Y. Laval: Comp. Mater. Sci. Vol. 29 (2004), p.379.

Google Scholar