GaAs/AlGaAs Quantum Cascade Lasers Based on Double Resonant Electron – LO Phonon Transitions

Article Preview

Abstract:

In this paper a procedure for the global optimization of mid-infrared GaAs/AlGaAs quantum cascade lasers that relies on the method of simulated annealing is presented. We propose a double longitudinal optical phonon resonance design obtained via a ladder of three states, with subsequent pairs separated by optical phonon energy. Addition of an extra level decreases the lower laser level population by enabling an efficient extraction into the injector region. The output characteristics of the optimized structures are calculated using the full self–consistent rate equation model, which includes all of the relevant scattering mechanisms. We also presented the experimentally measured output characteristics of an initial device, which are in agreement with the numerically calculated values, confirming the good design capabilities of the applied procedure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-30

Citation:

Online since:

September 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, Z. Cho, Science, 264 (1994), p.553.

Google Scholar

[2] C. Sirtori, H. Page, C. Becker, V. Ortiz, IEEE J. Quantum Electron., 38 (2002), p.547.

Google Scholar

[3] C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, U. Oesterle, Appl. Phys. Lett., 73 (1998), p.3486.

DOI: 10.1063/1.122812

Google Scholar

[4] A. Tredicucci, 7th Conf. on Intersubband Transitions in Quantum Wells, Evolène, Switzerland, 87 (2003).

Google Scholar

[5] M. Beck, D. Hofstetter, T. Aellen, S. Blaser, J. Faist, U. Oesterle, E. Gini, J. Cryst. Growth, 251 (2003), p.697.

DOI: 10.1016/s0022-0248(02)02424-7

Google Scholar

[6] P. Kruck, H. Page, C. Sirtori, S. Barbieri, M. Stellmacher, J. Nagle, Appl. Phys. Lett, 76 (2000), p.3340.

DOI: 10.1063/1.126686

Google Scholar

[7] D. Indjin, P. Harrison, R. W. Kelsall, Z. Ikonić, J. of Appl. Phys., 91 (2002), p.9019.

Google Scholar

[8] D. Indjin, P. Harrison, R. W. Kelsall, Z. Ikonić, Appl. Phys. Lett, 81 (2002), p.400.

Google Scholar

[9] D. Indjin, P. Harrison, R. W. Kelsall, Z. Ikonić, IEEE Photon. Technol. Lett, 15 (2003), p.15.

Google Scholar

[10] D. Indjin, P. Harrison, R. W. Kelsall, Z. Ikonić, Appl. Phys. Lett, 82 (2003), p.1347.

Google Scholar

[11] J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, S. Blaser, IEEE J. Quantum Electron., 38 (2002), p.533.

DOI: 10.1109/jqe.2002.1005404

Google Scholar

[12] N. Imam, E. N. Glytsis, and T. K. Gaylord, Superlattices Microstruct. 30 (2001), p.29.

Google Scholar

[13] J. Radovanović, V. Milanović, Z. Ikonić, and D. Indjin, Semicond. Sci. Technol. 17 (2002), p.716.

Google Scholar

[14] H. Page, C. Becker, A. Robertson, G. Glastre, V. Ortiz, and C. Sirtori, Appl. Phys. Lett. 78 (2001).

Google Scholar

[6] The symbols correspond to the calculated data, while the lines represent the least square fit, which can be used to estimate the gain coefficient g. The threshold currents can be obtained from the intersection points with the total loss line αM+αW~20cm -1. 0 5 10 15 20 25 30 0 10 20 30 40 50 60 70 80 TQW T=77K 2LO 4QW T=77K 2LO step-like T=77K TQW T=300K 2LO 4QW T=300K 2LO step-like T=300K J[kA/cm ] 2 G [cm ] -1 M α αM W+.

Google Scholar