The Role of Special Boundaries during Solidification and Microstructure Evolution in Lead Free Solder Joints

Article Preview

Abstract:

Solder joints based on Sn-Ag used in electronic systems fail due to thermomechanical fatigue (TMF) damage that develops during service. Grain boundary sliding and/or shear band formation are observed during TMF. Orientation Imaging Microscopy (OIM) was used to study the damage that develops and relate it to slip systems and the grain boundary character that is prevalent in tin. A number of special boundaries form preferentially during solidification, and those with misorientations about a [110] axis, including low angle boundaries, are more likely to slide with thermal cycling. Special boundaries aligned to have large resolved shear stress exhibit large scale sliding, and others with normal stress components exhibit fracture. Damage accumulation depends on the deformation mode, temperature, and initial crystal orientations present in the joint.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 495-497)

Pages:

1419-1424

Citation:

Online since:

September 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Glazer, J. Electron Mater., Vol 23(8) (1994), pp.693-700.

Google Scholar

[2] S.K. Kang and A.K. Sarkhel, J. Electron Mater., Vol 23 (1994), pp.701-707.

Google Scholar

[3] S. Jin, JOM, Vol 45(7) (1993), p.13.

Google Scholar

[4] M. McCormack and S. Jin, JOM, Vol 45(7) (1993), pp.36-40.

Google Scholar

[5] S. Choi, J.G. Lee, K.N. Subramanian, J.P. Lucas and T.R. Bieler, J. Electron Mater., Vol 31(4) (2002), p.292.

Google Scholar

[6] M.F. Ashby and R.A. Verrall, Acta Metallurgica, Vol 21(2) (1973), p. (1973).

Google Scholar

[7] J.A. Rayne and B.S. Chandrasekhar, Phys. Rev., Vol 120 (1960), pp.1658-1663.

Google Scholar

[8] B. Chalmers, Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, Vol 156/888 (1936), pp.427-443.

Google Scholar

[9] D. Frear, H. Morgan, The mechanics of Solder Alloy interconnects, ed. J.H. Lau, (1994).

Google Scholar

[10] B. Duzgun, A.E. Ekinci, I. Karaman and N. Ucar, J. of Mech. Behavior of Materials, Vol 10(3) (1999), pp.187-203.

Google Scholar

[11] M. Fujiwara and T. Hirokawa, J. Japan Inst. Metals, Vol 51(9) (1987), pp.830-838.

Google Scholar

[12] D.W. Henderson, J.J. Woods, T.A. Gosselin, J. Bartelo, D.E. King, T.M. Korhonen, M.A. Korhonen, L.P. Lehman, E.J. Cotts, S.K. Kang, P.A. Lauro, D.Y. Shih, C. Goldsmith and K.J. Puttlitz, J. Mater. Res., Vol 19(6) (2004), pp.1608-1612.

DOI: 10.1557/jmr.2004.0222

Google Scholar

[13] A.U. Telang, T.R. Bieler, S. Choi and K.N. Subramanian, J. Mater. Res., Vol 17(9) (2002), pp.2294-2306.

Google Scholar

[14] A.U. Telang, T.R. Bieler, M.A. Crimp and K.N. Subramanian, Material Science and Engineering A, submitted (2004).

Google Scholar

[15] A.U. Telang, T.R. Bieler, J.P. Lucas, K.N. Subramanian, L.P. Lehman, Y. Y. and E. Cotts, J. of Electron. Mater., Vol 33(12), (Dec. 2004), in press.

Google Scholar

[16] A.U. Telang and T.R. Bieler, Scripta Materialia, submitted (2004).

Google Scholar

[17] A.U. Telang, T.R. Bieler, D.E. Mason and K.N. Subramanian, J. Electron Mater., Vol 32/12 (2003), pp.1455-1462.

Google Scholar

[18] L.P. Lehman, S.N. Athavale, T.Z. Fullem, A.C. Giamis, R.K. Kinyanjui, M. Lowenstein, K. Mather, R. Patel, D. Rae, J. Wang, Y. Xing, L. Zavalij, P. Borgesen and E.J. Cotts, J. of Electron. Mater., Vol 33(12), (2004).

DOI: 10.1007/s11664-004-0083-0

Google Scholar