Simulation of Earing during Deep Drawing of bcc Steel by Use of a Texture Component Crystal Plasticity Finite Element Method

Article Preview

Abstract:

We present a numerical study on the influence of crystallographic texture on the earing behavior of a low carbon steel during cup drawing. The simulations are conducted by using the texture component crystal plasticity finite element method which accounts for the full elastic-plastic anisotropy of the material and for the explicit incorporation of texture including texture update. Several important texture components that typically occur in commercial steel sheets were selected for the study. By assigning different spherical scatter widths to them the resulting ear profiles were calculated under consideration of texture evolution. The study reveals that 8, 6, or 4 ears can evolve during cup drawing depending on the starting texture. An increasing number of ears reduces the absolute ear height. The effect of the orientation scatter width (texture sharpness) on the sharpness of the ear profiles was also studied. It was observed that an increase in the orientation scatter of certain texture components entails a drop in ear sharpness while for others the effect is opposite.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 495-497)

Pages:

1529-1534

Citation:

Online since:

September 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Van Houtte P, Mols K, Van Bael B, Aernoudt E, Textures and Microstructures 1989, 11: 23.

DOI: 10.1155/tsm.11.23

Google Scholar

[2] Hosford W F, The Mechan. Crystals and Textured Polycrystals, Oxford University Press (1993).

Google Scholar

[3] Bacroix B, Gilormini P, Model. Simul. Mater. Sci. Eng. 1995, 3: 1.

Google Scholar

[4] Balasubramanian S, Anand L, Computational Mechanics 1996, 17: 209.

Google Scholar

[5] Hosford W F, Textures and Microstructures 1996, 26: 479.

Google Scholar

[6] Kocks U F, Tóme C N, Wenk H R, Texture and Anisotropy - Preferred Orientations in Polycrystals and Their Effect on Material Properties, Cambridge University Press (1998).

Google Scholar

[7] Zhou Y, Jonas J J, Savoie J, Makinde A, MacEwen S R, Intern. J. Plasticity 1998, 14: 117.

Google Scholar

[8] Hu, J G, Jonas J J, Ishikawa T, Mater. Sc. Engin. A 1998, 256: 51.

Google Scholar

[9] Aretz H, Luce R, Wolske M, Kopp R, Goerdeler M, Marx V, Pomana G, Gottstein G, Model. Simul. Mater. Sci. Eng. 2000, 8: 881.

DOI: 10.1088/0965-0393/8/6/309

Google Scholar

[10] Peeters B, Hoferlin E, Van Houtte P, Aernoudt E, Intern. J. Plasticity 2001, 17: 819.

Google Scholar

[11] Becker R, Smelser R E, Panchanadeeswaran S, Modelling Simul Mater Sci Eng 1993, 1: 203.

Google Scholar

[12] Beaudoin A J, Dawson P R, Mathur K K, Kocks U K, Korzekwa D A. Comput Methods Appl Mech Engrg 1994, 117: 49.

Google Scholar

[13] Engler O, Kalz S, Mater. Sc. Engin. A 2004, 373: 350.

Google Scholar

[14] Chung Y H, Cho K K, Han J H, Shin M C, Scripta Mater. 2000, 43: 759.

Google Scholar

[15] Savoie J, Zhou Y, Jonas J J, MacEwen S R, 1996 Acta Mater., 44: 587.

Google Scholar

[16] Zhao Z, Mao W, Roters F, Raabe D: Acta Mater. 2004, 52: 1003.

Google Scholar

[17] Wassermann G, Grewen J, Texturen metall. Werkstoffe, Springer-Verlag, Germany (1969).

Google Scholar

[18] Mishra S, Därmann C, Lücke K, Acta Met. 1984, 32: 2185.

Google Scholar

[19] Hutchinson W B, Int. Mat. Rev. 1984, 29: 25.

Google Scholar

[20] von Schlippenbach U, Emren F, Lücke K, Acta Metall. 1986, 34: 1289.

Google Scholar

[21] Ray R, Jonas J, Mat. Rev. 1990, 35: 1.

Google Scholar

[22] Hölscher M, Raabe D, Lücke K, Steel Research 1991, 62: 567.

Google Scholar

[23] Raabe D, Lücke K, Mater. Sc. Techn. 1993, 9: 302.

Google Scholar

[24] Hill R. Proc Royal Soc London 1948, A193: 281.

Google Scholar

[25] Hill R. Math Proc Cambridge Philos Soc 1949, 85: 179.

Google Scholar

[26] Hosford W F, Seventh N, American Metalworking Res. Conf. Proc, 1979: 191.

Google Scholar

[27] Barlat F, Mater. Sc. Engin. 1987, 91: 55.

Google Scholar

[28] Barlat F, Lian J., Int. Intern. J. Plasticity 1989, 5: 51.

Google Scholar

[29] Pierce D, Asaro R J, Needleman A, Acta Metall. 1982, 30: 1087.

Google Scholar

[30] Asaro R J, Adv. appl. Mech. 1983, 23: 1.

Google Scholar

[31] Pierce D, Asaro R J, Needleman A, Acta Metall. 1983, 31: (1951).

Google Scholar

[32] Needleman A, Asaro R J, Acta Metall. 1985, 33: 923.

Google Scholar

[33] Kalidindi S R, Bronkhorst C A, Anand L, J. Mech. Phys. Solids 1992, 40: 537.

Google Scholar

[34] Mathur K K, Dawson P R, Intern. J. Plasticity 1989, 5: 67.

Google Scholar

[35] Smelser R E, Becker R. ABAQUS User's Group Conf. Proc., Oxford 1999: 457.

Google Scholar

[36] Beaudoin A J, Dawson P R, Mathur K K, Kocks U F, Korzekwa D A. Comp Meth Appl Mech Eng 1994, 117: 49.

Google Scholar

[37] Raabe D, Roters F, Intern. J. Plasticity 2004, 20: 339.

Google Scholar

[38] Raabe D, Zhao Z, Roters F, Scripta Mater. 2004, 50: 1085.

Google Scholar

[39] Li S, Hoferlin E, Van Bael A, Van Houtte P, Adv. Engin. Mater. 2001, 3: 990.

Google Scholar

[40] Nakamachi E, Xie C L, Harimoto M, Intern. J. Mechan. Sc. 2001, 43: 631.

Google Scholar

[41] Xie C L, Nakamachi E, Materials and Design 2002, 23: 59.

Google Scholar

[42] MSC. Marc user's manual, Vol. D, MSC Software Corporation, (2001).

Google Scholar

[43] Raabe D, Sachtleber M, Zhao Z, Roters F, Zaefferer S, Acta Mater. 2001, 49: 3433.

Google Scholar

[44] Wang Y, Raabe D, Klüber C, Roters F, Acta Mater. 2004, 52: 2229.

Google Scholar

[45] Raabe D, Steel Research 1995, 66: 222.

Google Scholar

[46] Raabe D, Scripta metall. 1995, 33: 735.

Google Scholar

[47] Bunge H J, 1982 Texture analysis in materials science. Butterworths, London, England.

Google Scholar