Application of Orientation Microscopy in SEM and TEM for the Study of Texture Formation during Recrystallisation Processes

Article Preview

Abstract:

Orientation microscopy in TEM and SEM is a particularly well suited tool to study recrystallisation processes because these are always associated with orientation and microstructure changes. The present work discusses the possibilities and limits of the TEM and SEM based techniques and illustrates their use by means of 3 different examples. The examples include studies on nucleation mechanisms of primary recrystallisation where the techniques meet their limits in spatial resolution. The problem of in-situ observations of annealing processes is discussed and it is shown how recrystallisation simulation techniques based on experimental data may be used. Furthermore the new technique of 3-dimensional EBSD in a focused-ion-beam (FIB) SEM is presented with one example. Finally, the statistical analysis of very large orientation data sets is discussed by an example of secondary recrystallisation in electrical steels.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 495-497)

Pages:

3-12

Citation:

Online since:

September 2005

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. J. Duggan, K. Lücke, G. Köhlhoff, C.S. Lee, Acta metall. mater., 41 (1993), (1921).

Google Scholar

[2] H.F. Poulsen, X. Fu, E. Knudsen, E.M. Lauridsen, L. Margulies, S. Schmidt, Proc. 2 nd Joint Int. Conf. Recrystallization and Grain Growth, ReX& GG2, Material Science Forum 467 - 470, (2004), 1363-1372.

DOI: 10.4028/www.scientific.net/msf.467-470.1363

Google Scholar

[3] D.J. Dingley, Journal of Microscopy 213 (2004), 214-224.

Google Scholar

[4] A.J. Schwartz, M. Kumar, B.L. Adams (eds. ), Electron Backscatter Diffraction in Material Science. Kluwer Acad. /Plenum Publ., New York (2000).

Google Scholar

[5] N.C. Krieger Lassen, D. Juul Jensen, K. Conradsen, Scanning Microscopy 6 (1992), 115-121.

Google Scholar

[6] R.A. Schwarzer, Micron, 28 (1997), 249-265.

Google Scholar

[7] B.L. Adams, S.I. Wright, K. Kunze, Metall. Trans. 24A (1993), 819-831.

Google Scholar

[8] M. Groeber, B. Haley, M. Uchic, S. Ghosh, AIP Conference Proceedings 712 (2004) 1712.

Google Scholar

[9] S. Zaefferer, Adv. Eng. Mat. 5 (2003), 745 -752.

Google Scholar

[10] J. J. Fundenberger, A. Morawiec, E. Bouzy, J. S. Lecomte, Ultramicroscopy 96 (2003), 127.

DOI: 10.1016/s0304-3991(02)00435-7

Google Scholar

[11] N.C. Krieger-Lassen, Proc. 16th Risø Intern. Symp. (1995), 405-411.

Google Scholar

[12] R.A. Schwarzer, J. Sukkau, Mater. Sci. Forum 273-275 (1998), 215-222.

Google Scholar

[13] S. Zaefferer, Journal of Applied Crystallography 33 (2000), 10 - 25.

Google Scholar

[14] S. Zaefferer, Advances in Imaging and Electron Physics 125 (2002), 355 - 415.

Google Scholar

[15] S.I. Wright, D.J. Dingley, Mater. Sci. Forum, 273-275 (1998), 209.

Google Scholar

[16] A.A. Ridha, W.B. Hutchinson, Acta metall. 30 (1982), (1929).

Google Scholar

[17] H. Réglé, Proc. 1 st Joint Int. Conf. Recrystallization and Grain Growth, ReX& GG1, Springer Verlag Berlin, (2004), 707-717.

Google Scholar

[18] S. Zaefferer, T. Baudin, R. Penelle, Acta mater. 49 (2001), 1105 - 1122.

Google Scholar

[19] F.J. Humphreys, Acta Materialia 45 (1997) 5031.

Google Scholar

[20] D.M. Saylor, A. Morawiec, G.S. Rohrer, Acta Materialia 51 (2003), 3675.

Google Scholar

[21] S. Suzuki, Y. Ushigami, H. Homma, S. Takebayashi, T. Kubota, Mater. Trans. 42 (2001), 994.

Google Scholar

[22] S. Zaefferer, Le Revue de Métallurgie (2003), 891 - 901.

Google Scholar

[23] F.J. Humphreys, J . Mat. Sci. 36 (2001), 3833-3854.

Google Scholar

[24] S. Zaefferer, JEOL News 39 (2004), 10 - 15.

Google Scholar

[25] F.J. Humphreys, P.S. Bate, P.J. Hurley, Journal of Microscopy 201 (2001), 50.

Google Scholar

[26] M.M. Nowell, D.P. Field, S.I. Wright, T.M. Lillo, Proc. 2nd Joint Int. Conf. Recrystallization and Grain Growth, ReX& GG2, Material Science Forum 467 - 470 (2004), 1401 - 1406.

DOI: 10.4028/www.scientific.net/msf.467-470.1401

Google Scholar

[27] G.G.E. Seward, D.J. Prior, J. Wheeler, S. Celotto, D.J.M. Halliday, R.S. Paden, M.R. Tye, Scanning 24 (2004), 232-240.

DOI: 10.1002/sca.4950240503

Google Scholar

[28] R. Penelle, T. Baudin, D.J. Dingley, M. Tiner, S.I. Wright, Proc. 13 th Intern. Conf. Textures of Materials (ICOTOM 13) (2002), 523-529.

Google Scholar

[29] W.B. Hutchinson, Acta metall. 37 (1989), 1047.

Google Scholar

[30] I. Thomas, S. Zaefferer, F. Friedel, D. Raabe, Adv. Eng. Mat. 5 (2003), 566 - 570.

Google Scholar

[31] N. Chen, S. Zaefferer, L. Lahn, K. Günther, D. Raabe, Proc. of the 13 th Int. Conf. Textures of Materials (ICOTOM 13) Seoul (2002), 949 - 954.

Google Scholar

[32] E.A. Holm, M.A. Miodownik, K.J. Healey, Proc. 2 nd Joint Int. Conf. Recrystallization and Grain Growth, ReX& GG2, Material Science Forum 467 - 470 (2004), 611-616.

DOI: 10.4028/www.scientific.net/msf.467-470.611

Google Scholar

[33] M. Demura, Y. Suga, O. Umezawa, K. Kishida, E.P. George, T. Hirano, Intermetallics 9 (2001), 157-167.

DOI: 10.1016/s0966-9795(00)00121-7

Google Scholar

[34] N. Chen, S. Zaefferer, L. Lahn, K. Günther, D. Raabe, Acta mater. 51 (2003), 1755 - 1765.

Google Scholar

[35] J. Von Neumann, Metal interfaces. American Society for Metals, Cleveland 1952, 108.

Google Scholar

[36] H. Homma, B. Hutchinson, Acta mater. 51, 3795-3805 (2003).

Google Scholar

[37] S. Zaefferer, N. Chen, Int. Conf. Textures and Anisotropy of Polycrystals (ITAP2)(2004), in press.

Google Scholar

[38] D. Dorner, L. Lahn, S. Zaefferer, Proc. 2 nd Joint Int. Conf. Recrystallization and Grain Growth, ReX& GG2, Material Science Forum 467 - 470, (2004), 129 - 134.

Google Scholar