Formation of Inhomogeneous Texture and Structure in Metal Materials under Equal-Channel Angular Pressing

Article Preview

Abstract:

Texture analysis and the new X-ray method of Generalized Pole Figures (GPF) were used by the study of texture and substructure inhomogeneity of Ti rods, submitted to Equal-Channel Angular Pressing (ECAP) at 400oC. Local texture features testify about gradual rotation of loading axes by ~15o when crossing the rod’s section. As a result of second pass (route C), the specific ECAP texture weakens and the textureless component intensifies. Observed substructure changes are connected with development of dynamic recovery and dynamic recrystallization.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 495-497)

Pages:

827-832

Citation:

Online since:

September 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Yu. Perlovich, H.J. Bunge, M. Isaenkova.: Text. & Microstr. 1997, Vol. 29 (1997), pp.241-266.

Google Scholar

[2] Yu. Perlovich, M. Isaenkova: Metall. Mater. Trans. A Vol. 33A (2002), pp.867-874.

Google Scholar

[3] B.E. Warren: X-Ray Diffraction (Addison-Wesley Publishing Company, Inc., Reading, MA), (1969).

Google Scholar

[4] G.K. Williamson, R.E. Smallman: Phil. Mag. Vol. 1 (1956), pp.34-46.

Google Scholar

[5] P.A. Tempest: J. Nucl. Mater. Vol. 92 (1980), pp.191-200.

Google Scholar

[6] E. Calnan, C.J. Clews: Phil. Mag. Vol. 42, ser. 7, No. 331 (1951), pp.919-931.

Google Scholar

[7] G. Wassermann, J. Grewen: Texturen metallischer Werkstoffe (Springer-Verlag, BerlinGottingen-Heidelberg), (1962).

DOI: 10.1007/978-3-662-13128-2

Google Scholar

[8] A.A. Alsagarov, R.A. Adamesku, P.V. Geld: Proc. USSR Acad. of Sci. Metals No. 2 (1977), pp.139-142.

Google Scholar

[9] S.C. Baik, Yu. Estrin, H.S. Kim, H.T. Jeong, R.J. Helmig: Mat. Sci. For. Vols. 408-412 (2002), pp.697-702.

Google Scholar

[10] D.O. Hobson: Trans. Met. Soc. AIME Vol. 242 (1968), pp.1105-1110.

Google Scholar

[11] I. Matcegorin, A. Rusakov and A. Evstyukhin: in Metallurgy and Metal Science of Pure Metals (Atomizdat, Moscow), No. 14, 1980, pp.39-52.

Google Scholar

[12] M. Isaenkova, Yu. Perlovich: Proc. USSR Acad. of Sci. Metals N 3 (1987), pp.152-155.

Google Scholar

20 40 60 80 100.

Google Scholar

[10] [20] [30] [40] [50] [0] 0. 1 0. 2 0. 3.

Google Scholar

[10] [20] [30] 0. 1.

Google Scholar

[10] [20] [30] [1] 10 100 a b c 0. 01 ν(εc), % ν(ρc).

Google Scholar

20 40 60 80 100 Coherent domain size Dc, nm.

Google Scholar

[10] [20] [30] [40] [50] [0] 0. 1 0. 2 0. 3 Lattice distortion εc.

Google Scholar

[10] [20] [30] 0. 1 Dislocation density ρc, 1014 m-2.

Google Scholar

[10] [20] [30] [1] 10 100 d e f 0. 01 ν(εc), % ν(ρc), % ν(Dc), % ν(Dc), % Fig. 5. Substructure inhomogeneity of Ti rods; section III, middle: a, b, c - rod 1; d, e, f - rod 2; a, d - ν(Dc); b, e - ν(εc); c, f - ν(ρc).

Google Scholar