Preparation of Nb-40Ti Powders by High-Energy Milling

Article Preview

Abstract:

Porous Ti-Nb alloys are promising candidates for biomedical applications. In the present study, alloy powders containing 60 wt-% Nb were prepared by high-energy milling of Nb, Ti, and/or TiH2 powders. The high-energy milling process was carried out in a planetary ball mill. The starting and as-milled materials were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM). Elemental (Nb, and Ti) and TiH2 powder mixtures with composition Nb-40wt%Ti were mechanically alloyed for 2 to 30 h. The formation of a BCC Nb(Ti) solid solution by high-energy milling using elemental Ti powder to produce Nb-40Ti was observed after milling for 30 h. A HCP-Ti solid solution was formed after milling for 30 h due to the partial decomposition of titanium hydride powder mixture during high-energy milling.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 498-499)

Pages:

146-151

Citation:

Online since:

November 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Long, H. J. Rack, Biomaterials 19 (1998) 1621-1639.

Google Scholar

[2] B. Grosgogeat, L. Reclaru, M. Lissac, F. Dalard, Biomaterials 20 (1999) 933-941.

DOI: 10.1016/s0142-9612(98)00248-8

Google Scholar

[3] S. Nishiguchi, H. Kato, H. Fujita, M. Oka, H. -M. Kim, T. Kokubo, T. Nakamura, Biomaterials 22 (2001) 2525-2533.

DOI: 10.1016/s0142-9612(00)00443-9

Google Scholar

[4] D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro, Materials Science and Engineering A 243 (1998) 244-249.

Google Scholar

[5] Y. Okazaki, Y. Ito, K. Kyo, T. Tateishi, Materials Science and Engineering A 213 (1996) 138- 147.

Google Scholar

[6] M. A. Khan, R. L. Williams, D. F. Williams, Biomaterials 20 (1999) 631-637.

Google Scholar

[7] F. K. Mante, G, R. Barah, B. Lucas, Biomaterials 20 (1999) 1051-1055.

Google Scholar

[8] S. Kanagaraja, A. Wennerberg, C. Eriksson, H. Nygren, Biomaterials 22 (2001) 1809-1818.

Google Scholar

[9] L. L. Ye, Z. G. Liu, K. Raviprasad, M. X. Quan, M. Umemoto, Z. Q. Hu, Materials Science and Engineering A, 241 (1998) 290-293.

DOI: 10.1016/s0921-5093(97)00505-4

Google Scholar

[10] Y. N. T. -Zhovnir, Metal Science and Heat Treatment, Vol. 40, Nos. 5-6 (1998) 210-216.

Google Scholar

[11] C. C. Kock, International Materials Reviews, Vol. 33, No. 4 (1988) 201-219.

Google Scholar

[12] J. W. Kaczmar, K. Pietrzak, W. Wlosinski, Journal of Materials Processing Technology, 106 (2000) 58-67.

Google Scholar

[13] C. Suryanarayana. Progress in Materials Science, 46 (2001), 1-184.

Google Scholar

[14] K. -M. Lee, P. H. Shingu, Journal of Alloys and Compounds 241 (1996) 153-159.

Google Scholar

[15] Y. Hwang, J. K. Lee, Materials Letters, 54 (2002) 1-7.

Google Scholar

[16] F. H. (Sam) Froes, C. Suryanarayana, K. Russell, C.G. Li, Materials Science and Engineering A 192/193 (1995) 612-623.

DOI: 10.1016/0921-5093(94)03285-8

Google Scholar

[17] J. Yang, J. Wu, W. Hua, Physica B, 279 (2000), 241-245.

Google Scholar

[18] N. Senkov, M. Cavusoglu, F. H. (Sam) Froes. Journal of Alloys and Compounds 297 (2000) 246-252.

Google Scholar