Developing a Model for Grain Refinement in Equal-Channel Angular Pressing

Article Preview

Abstract:

It is now recognized that processing by equal-channel angular pressing (ECAP) leads to very significant grain refinement in polycrystalline materials with the as-pressed grains typically having sizes within the submicrometer range. Furthermore, the materials produced by ECAP exhibit many useful properties including a high strength at ambient temperatures and, if these ultrafine grains are retained to elevated temperatures, a potential for superplastic forming. This paper examines the fundamental characteristics of grain refinement by making use of two sets of experimental observations: experimental data obtained from the pressing of aluminum single crystals through one pass of ECAP and hardness measurements taken on polycrystalline aluminum for samples subjected to ECAP for up to a total of eight passes. These experimental results are used to develop a microstructural model that provides a satisfactory explanation for the grain refinement occurring in ECAP.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 503-504)

Pages:

19-24

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.Z. Valiev, N.A. Krasilnikov and N.K. Tsenev, Mater. Sci. Eng. A137 (1991) 35.

Google Scholar

[2] R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov, Prog. Mater. Sci. 45 (2000) 103.

Google Scholar

[3] M. Furukawa, Z. Horita, M. Nemoto and T.G. Langdon, J. Mater. Sci. 36 (2001) 2835.

Google Scholar

[4] Z. Horita, T. Fujinami, M. Nemoto and T.G. Langdon, Metall. Mater. Trans. 31A (2000) 691.

Google Scholar

[5] R.Z. Valiev, D.A. Salimonenko, N.K. Tsenev, P.B. Berbon and T.G. Langdon, Scripta Mater. 37 (1997) (1945).

DOI: 10.1016/s1359-6462(97)00387-4

Google Scholar

[6] S. Komura, Z. Horita, M. Furukawa, M. Nemoto and T.G. Langdon, Metall. Mater. Trans. 32A (2001) 707.

Google Scholar

[7] C. Xu, M. Furukawa, Z. Horita and T.G. Langdon, Acta Mater. 51 (2003) 6139.

Google Scholar

[8] Z. Horita, M. Furukawa, M. Nemoto, A.J. Barnes and T.G. Langdon, Acta Mater. 48 (2000) 3633.

Google Scholar

[9] Y. Fukuda, K. Oh-ishi, M. Furukawa, Z. Horita and T.G. Langdon, Acta Mater. 52 (2004) 1387.

Google Scholar

[10] M. Furukawa, Y. Kawasaki, Y. Miyahara, Z. Horita and T.G. Langdon, Mater. Sci. Eng. (in press).

Google Scholar

[11] Y. Fukuda, K. Oh-ishi, M. Furukawa, Z. Horita and T.G. Langdon, to be published.

Google Scholar

[12] H. Miyamoto, U. Erb, T. Koyama, T. Mimaki, A. Vinogradov and S. Hashimoto, Phil. Mag. Lett. 84 (2004) 235.

Google Scholar

[13] Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon, Acta Mater. 45 (1997) 4733.

Google Scholar

[14] Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon, Acta Mater. 46 (1998) 3317.

Google Scholar

[15] Y. Wu and I. Baker, Scripta Mater. 37 (1997) 437.

Google Scholar

[16] C. Xu and T.G. Langdon, Scripta Mater. 48 (2003) 1.

Google Scholar

[17] H.S. Kim, M.H. Seo and S.I. Hong, Mater. Sci. Eng. A291 (2000) 86.

Google Scholar

[18] H.S. Kim, Mater. Sci. Eng. A315 (2001) 122.

Google Scholar

[19] S.D. Terhune, D.L. Swisher, K. Oh-ishi, Z. Horita, T.G. Langdon and T.R. McNelley, Metall. Mater. Trans. 33A (2002) 2173.

DOI: 10.1007/s11661-002-0049-x

Google Scholar

[20] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto and T.G. Langdon, Scripta Mater. 35 (1996) 143.

Google Scholar

[21] M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon, Mater. Sci. Eng. A257 (1998) 328.

Google Scholar

[22] C. Xu, M. Furukawa, Z. Horita and T.G. Langdon, Mater. Sci. Eng. (in press).

Google Scholar