Evolution of Microstructure and Precipitation in Heat-Treatable Aluminium Alloys during ECA Pressing and Subsequent Heat Treatment

Article Preview

Abstract:

The precipitation and evolution of microstructure in a spray-cast Al-7034 alloy and a commercial wrought Al-2024 alloy were studied after equal-channel angular pressing (ECAP) using transmission electron microscopy and differential scanning calorimetry (DSC). Microstructural examination showed the grain sizes of both alloys were reduced to the range of ~0.3–0.5 μm through ECAP. The DSC analysis identified the occurrence of thermal effects involving the formation, coarsening, dissolution and melting of the precipitate phases and concurrent recrystallization. The heating and ageing response of the alloys processed by ECAP was identified by micro-hardness testing of the samples after interrupted heating and ageing treatments.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 503-504)

Pages:

275-280

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Furukawa, Z. Horita, M. Nemoto and T.G. Langdon, J. Mater. Sci. Vol. 36 (2001), p.2835.

Google Scholar

[2] C. Xu, M. Furukawa, Z. Horita and T.G. Langdon, Adv. Eng. Mater. Vol. 5 (2003), p.359.

Google Scholar

[3] M. J. Starink, N. Gao, M. Furukawa, Z. Horita, C. Xu and T.G. Langdon, Rev. Adv. Mater. Sci. Vol. 7 (2004), p.1.

Google Scholar

[4] S. Lee, M. Furukawa, Z. Horita and T.G. Langdon, Mater. Sci. Eng. Vol. A342 (2003), p.294.

Google Scholar

[5] N. Gao, L. Davin, S. Wang, A. Cerezo and M.J. Starink, Mater. Sci. Forum Vol. 395-402 (2002), p.923.

Google Scholar

[6] M.J. Starink, Int. Mater. Rev. 49 (2004) 191-226.

Google Scholar

[7] C. Xu, M. Furukawa, Z. Horita and T.G. Langdon, Acta Mater. Vol. 57 (2005), p.749.

Google Scholar

[8] M.J. Starink and X.M. Li, Metall. Mater. Trans. Vol. A34 (2003), p.899.

Google Scholar

[9] M.J. Starink and S.C. Wang, Acta Mater. Vol. 51 (2003), p.5131.

Google Scholar

[10] R.M. Allen and J.B. Vande Sande, Acta Metall. Vol. 28 (1980), p.1185.

Google Scholar

[11] K. Stiller, P.J. Warren, V. Hansen, J. Angenete and J. Gjønnes, Mater. Sci. Eng. Vol. A270 (1999), p.55.

Google Scholar

[12] V. Hansen, O.B. Karlsen, Y. Langsrud and J. Gjønnes, Mater. Sci. Tech. Vol. 20 (2004), p.185.

Google Scholar

[13] T.L. Tsai, P.L. Sun, P.W. Kao and C.P. Chang, Mater. Sci. Eng. Vol. A342 (2003), p.144.

Google Scholar

[14] S.C. Wang and M.J. Starink, Int. Mater. Rev. (2005), in press.

Google Scholar

[15] C. Xu, M. Furukawa, Z. Horita and T.G. Langdon, Acta Mater. Vol. 51 (2003), p.6139.

Google Scholar

[16] M. J. Starink, N. Gao and J. L. Yan, Mater. Sci. Eng. Vol. A387-389 (2004), p.222.

Google Scholar