Temperature Effect on Tensile Behavior of Helical Multi-Shell Gold Nanowires

Article Preview

Abstract:

This study performs molecular dynamics (MD) simulations to investigate the tensile behavior of Helical Multi-Shell (HMS) gold nanowires. As their name suggests, these nanowires have a multi-shell helical structure rather than a conventional bulk FCC structure. The mechanical properties and deformation behaviors of the 7-1, 11-4 and 14-7-1 HMS structures are examined under tensile testing at temperatures between 4K and 300 K and a constant strain rate of 0.003% −1 ps . The results reveal that temperature influences the yielding stress, the Young’s modulus, and the deformation behaviors of HMS nanowires. The yielding stress of the 7-1 structure is found to be higher than that of the 11-4 or 14-7-1 structures. Finally, under different temperature conditions, many different close-packed structures are identified in the nanowires before they fracture.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 505-507)

Pages:

385-390

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Kondo, Kunio Takayangi Science Vol. 289 (2000), p.606.

Google Scholar

[2] Kunio Takayangi , Y. Kondo, H. Ohnishi JSAP Int. Vol. 3 (2001), p.3.

Google Scholar

[3] Y. Kondo, Kunio Takayangi Phys. Rev. Lett. Vol. 79 (1997), p.3455.

Google Scholar

[4] V. Rodrigues, D. Ugate Phys. Rev. B Vol. 63 (2001), pp.073405-1.

Google Scholar

[5] M. Barbic, J. J. Mock, D.R. Smith, S. Schultz J. Appl. Phys. Vol. 91 (2002), p.9341.

Google Scholar

[6] S. Michotte, S. M. Tempfli, L. Piraux Appl. Phys. Lett. Vol. 82 (2003), p.4119.

Google Scholar

[7] Y. Oshima, H. Koizumi, K. Mouri, H. Hirayama, K. Takayanagi Phys. Rev. B Vol. 65 (2002), p.121401.

Google Scholar

[8] T. T. Albrecht, J. Schotter, G. A. Kastle, N. Emley Science Vol. 290 (2000), p.2126.

Google Scholar

[9] Sugawara, T. Coyle, G. G. Hembree , M. R. Scheinfein Appl. Phys. Lett Vol. 70 (1997), p.1043.

Google Scholar

[10] R. SORDAN, m. Burghard, K. Kern Appl. Phys. Lett. Vol. 79 (2001), p. (2073).

Google Scholar

[11] Z. Tang, N. A. Kotov, M. Giersig Science Vol. 297 (2002), p.237.

Google Scholar

[12] J. Wang, X. Chen, G. Wang, B. Wang, W. Lu, and J. Zhao Physical Review B Vol. 66 (2002), p.085408.

Google Scholar

[13] J. Schiotz, K. W. Jacobsen Science Vol. 301 (2003), p.1357.

Google Scholar

[14] W. J. Chang, T. H. Fang J. of Phys. and Chem. of Solids Vol. 64 (2003), p.1279.

Google Scholar

[15] R. Komanduri, N. Chandrasekaran, L. M. Raff Int. J. of Mech. Sci. Vol. 43 (2001), p.2237.

Google Scholar

[16] P. S. Branicio, J. P. Rino Physical Review B Vol. 62 (2000), p.16950.

Google Scholar

[17] V. Rosato, M. Guillope, B. Legrand, Philosophical Magazie A Vol. 59 (1989), p.321.

Google Scholar

[18] F. Cleri, and V. Rosato Physical Review B Vol. 48 (1993), p.22.

Google Scholar

[19] J. M. Haile, Molecular Dynamics Simulation (John Wiley & Sons, Canada, 1992).

Google Scholar

[20] S. P. Ju, J. S. Lin and W. J. Lee Nanotechnol Vol. 15 (2004), p.1221.

Google Scholar

[21] E. Tosatti, S. Prestipino, S. Kostlmeier, A. D. Corso, and F. D. Di Tolla Science Vol. 291 (2001), p.288.

DOI: 10.1126/science.291.5502.288

Google Scholar

[22] H. Liang, X. Wang, H. Wu and Y. Wang Acta Mech. Sinica Vol. 34 (2002), p.208.

Google Scholar

[23] P. S. Branicio and J. P. Rino, Phys. Rev. B Vol. 62 (2000), p.16950.

Google Scholar