Nonequilibrium Kinetics of Phase Boundary Movement in Cellular Automaton Modelling

Article Preview

Abstract:

A mathematical crystallization model in the meso scale (the intermediate dimension scale between interatomic distance in solids and grain size in metals and alloys) is presented with the use of a kinetic-diffusion cellular automaton model. The model considers the non-equilibrium character of real processes of phase transformations, where the kinetic undercooling of the solid-liquid interface is a measure of this non-equilibrium level. Anisotropy of the interface mobility is assumed. The modelling results are compared to the experimental data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

405-410

Citation:

Online since:

March 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Brener E.A., Mel'nikov V.I.: Pattern selection in two-dimensional dendritic growth. Adv. Phys., Vol. 40, No. 1, (1991) 53-97.

Google Scholar

[2] Brener E., Müller-Krumbhaar H., Temkin D., Abel T.: Morphology diagram of possible stuctures in diffusional growth. Physica A, Vol. 249 (1998) 73-81.

DOI: 10.1016/s0378-4371(97)00433-0

Google Scholar

[3] Huang S. -C., Glicksman M.E.: Fundamentals of Dendritic Solidification. Acta Metall., Vol. 29 (1981) 701-715.

Google Scholar

[4] Уманцев Р.А., Виноградов В. В, Борисов В.Т.: Математическое моделирование роста дендритов в переохлаждённом расплаве. Кристаллография, Vol. 30 (1985) 455-460.

Google Scholar

[5] Уманцев Р.А., Виноградов В. В, Борисов В.Т.: Моделирование эволюции дендритной структуры. Кристаллография, Vol. 31 (1985) 1002-1008.

Google Scholar

[6] Rappaz M., Gandin Ch. -A.: Probabilistic Modelling of Microstructure Formation in Solidification Processes. Acta Metall. Mater, Vol. 41 (1993) 345-360.

DOI: 10.1016/0956-7151(93)90065-z

Google Scholar

[7] Cortie M.B.: Simulation of Metal Solidification Using a Cellular Automaton. Metall. Trans. B, Vol. 24B (1993) 1045-1053.

Google Scholar

[8] Zhu P., Smith R.W.: Dynamic Simulation of Crystal Growth by Monte Carlo Method - I. Model Description and Kinetics. Acta Metall. Mater, Vol. 40 (1992) 683-692.

DOI: 10.1016/0956-7151(92)90009-4

Google Scholar

[9] Gandin Ch. -A., Rappaz M.A.: Coupled Finite Element - Cellular Automaton Model for the Prediction of Dendritic Grain Structures in Solidification Processes. Acta Metall. Mater, Vol. 42, Nr 7 (1994) 2233-2246.

DOI: 10.1016/0956-7151(94)90302-6

Google Scholar

[10] Zhu M.F., Hong C.P.: A Three Dimensional Modified cellular Automaton Model for the Prediction of Solidification Microstructures. ISIJ International, Vol. 42 (2002) 520-526.

DOI: 10.2355/isijinternational.42.520

Google Scholar

[11] Zhu M.F., Hong C.P.: A Modified Cellular Automation Model for the Simulation of Dendritic Growth in Solidification of Alloys. ISIJ International, Vol. 41 (2001) 436-445.

DOI: 10.2355/isijinternational.41.436

Google Scholar

[12] Rappaz M., Gandin Ch. -A., Jacot A., Charbon Ch.: Modeling of Microstructure Formation. Modeling of Casting, Welding and Advanced Solidification Processes - VII. M. Cross and J. Campbell (eds. ). TMS (1995) 501-516.

Google Scholar

[13] Burbelko A.: Mezomodelling of Solidification Using a Cellular Automaton. Krakow. UWND (2004) 97.

Google Scholar

[14] Nastac L.: Numerical Modeling of Solidification Morphologies and Segregation Patterns in Cast Dendritic Alloys. Acta Mater., Vol. 47 (1999) 4253-4262.

DOI: 10.1016/s1359-6454(99)00325-0

Google Scholar

[15] Zhu M.F., Hong C.P.: A Modified Cellular Automation Model for the Simulation of Dendritic Growth in Solidification of Alloys. ISIJ International, Vol. 41 (2001) 436-445.

DOI: 10.2355/isijinternational.41.436

Google Scholar

[16] Trivedi R., Franke H., Lacmann R.: Effects of Interface Kinetics on the Growth Rate of Dendrites. J. Cryst. Growth, Vol. 47 (1979) 389-396.

DOI: 10.1016/0022-0248(79)90204-5

Google Scholar

[17] Hoyt J.J., Asta M.: Atomistic Computation of Liquid Diffusivity, Solid-Liquid Interfacial Free Energy, and Kinetic Coefficient in Au and Ag. Phys. Rev. B, Vol. 65 (2002) Art. 214106, 1-11.

DOI: 10.1103/physrevb.65.214106

Google Scholar

[18] Woodruff D.P.: The Solid-Liquid Interface. London, Cambridge University Press (1973) 182.

Google Scholar

[19] Xu J. -J.: Stability and Selection of Dendritic Growth with Anisotropic Kinetic Attachment. J. Crystal Growth, Vol. 245 (2002) 134-148.

DOI: 10.1016/s0022-0248(02)01642-1

Google Scholar

[20] Al-Rawahi N., Tryggvason G.: Numerical Simulation of Dendritic Solidification with Convection: Two-Dimensional Geometry. J. Comp. Physics, Vol. 180 (2002) 471-496.

DOI: 10.1006/jcph.2002.7092

Google Scholar

[21] Muschol M., Liu D., Cummins H.Z.: Surface-Tension-Anisotropy Measurements of Succinonitrile and Pivalic Acid: Comparison with Microscopic Solvability Theory. Phys. Rev. E, Vol. 46 (1992) 1038-1050.

DOI: 10.1103/physreva.46.1038

Google Scholar