[1]
Brener E.A., Mel'nikov V.I.: Pattern selection in two-dimensional dendritic growth. Adv. Phys., Vol. 40, No. 1, (1991) 53-97.
Google Scholar
[2]
Brener E., Müller-Krumbhaar H., Temkin D., Abel T.: Morphology diagram of possible stuctures in diffusional growth. Physica A, Vol. 249 (1998) 73-81.
DOI: 10.1016/s0378-4371(97)00433-0
Google Scholar
[3]
Huang S. -C., Glicksman M.E.: Fundamentals of Dendritic Solidification. Acta Metall., Vol. 29 (1981) 701-715.
Google Scholar
[4]
Уманцев Р.А., Виноградов В. В, Борисов В.Т.: Математическое моделирование роста дендритов в переохлаждённом расплаве. Кристаллография, Vol. 30 (1985) 455-460.
Google Scholar
[5]
Уманцев Р.А., Виноградов В. В, Борисов В.Т.: Моделирование эволюции дендритной структуры. Кристаллография, Vol. 31 (1985) 1002-1008.
Google Scholar
[6]
Rappaz M., Gandin Ch. -A.: Probabilistic Modelling of Microstructure Formation in Solidification Processes. Acta Metall. Mater, Vol. 41 (1993) 345-360.
DOI: 10.1016/0956-7151(93)90065-z
Google Scholar
[7]
Cortie M.B.: Simulation of Metal Solidification Using a Cellular Automaton. Metall. Trans. B, Vol. 24B (1993) 1045-1053.
Google Scholar
[8]
Zhu P., Smith R.W.: Dynamic Simulation of Crystal Growth by Monte Carlo Method - I. Model Description and Kinetics. Acta Metall. Mater, Vol. 40 (1992) 683-692.
DOI: 10.1016/0956-7151(92)90009-4
Google Scholar
[9]
Gandin Ch. -A., Rappaz M.A.: Coupled Finite Element - Cellular Automaton Model for the Prediction of Dendritic Grain Structures in Solidification Processes. Acta Metall. Mater, Vol. 42, Nr 7 (1994) 2233-2246.
DOI: 10.1016/0956-7151(94)90302-6
Google Scholar
[10]
Zhu M.F., Hong C.P.: A Three Dimensional Modified cellular Automaton Model for the Prediction of Solidification Microstructures. ISIJ International, Vol. 42 (2002) 520-526.
DOI: 10.2355/isijinternational.42.520
Google Scholar
[11]
Zhu M.F., Hong C.P.: A Modified Cellular Automation Model for the Simulation of Dendritic Growth in Solidification of Alloys. ISIJ International, Vol. 41 (2001) 436-445.
DOI: 10.2355/isijinternational.41.436
Google Scholar
[12]
Rappaz M., Gandin Ch. -A., Jacot A., Charbon Ch.: Modeling of Microstructure Formation. Modeling of Casting, Welding and Advanced Solidification Processes - VII. M. Cross and J. Campbell (eds. ). TMS (1995) 501-516.
Google Scholar
[13]
Burbelko A.: Mezomodelling of Solidification Using a Cellular Automaton. Krakow. UWND (2004) 97.
Google Scholar
[14]
Nastac L.: Numerical Modeling of Solidification Morphologies and Segregation Patterns in Cast Dendritic Alloys. Acta Mater., Vol. 47 (1999) 4253-4262.
DOI: 10.1016/s1359-6454(99)00325-0
Google Scholar
[15]
Zhu M.F., Hong C.P.: A Modified Cellular Automation Model for the Simulation of Dendritic Growth in Solidification of Alloys. ISIJ International, Vol. 41 (2001) 436-445.
DOI: 10.2355/isijinternational.41.436
Google Scholar
[16]
Trivedi R., Franke H., Lacmann R.: Effects of Interface Kinetics on the Growth Rate of Dendrites. J. Cryst. Growth, Vol. 47 (1979) 389-396.
DOI: 10.1016/0022-0248(79)90204-5
Google Scholar
[17]
Hoyt J.J., Asta M.: Atomistic Computation of Liquid Diffusivity, Solid-Liquid Interfacial Free Energy, and Kinetic Coefficient in Au and Ag. Phys. Rev. B, Vol. 65 (2002) Art. 214106, 1-11.
DOI: 10.1103/physrevb.65.214106
Google Scholar
[18]
Woodruff D.P.: The Solid-Liquid Interface. London, Cambridge University Press (1973) 182.
Google Scholar
[19]
Xu J. -J.: Stability and Selection of Dendritic Growth with Anisotropic Kinetic Attachment. J. Crystal Growth, Vol. 245 (2002) 134-148.
DOI: 10.1016/s0022-0248(02)01642-1
Google Scholar
[20]
Al-Rawahi N., Tryggvason G.: Numerical Simulation of Dendritic Solidification with Convection: Two-Dimensional Geometry. J. Comp. Physics, Vol. 180 (2002) 471-496.
DOI: 10.1006/jcph.2002.7092
Google Scholar
[21]
Muschol M., Liu D., Cummins H.Z.: Surface-Tension-Anisotropy Measurements of Succinonitrile and Pivalic Acid: Comparison with Microscopic Solvability Theory. Phys. Rev. E, Vol. 46 (1992) 1038-1050.
DOI: 10.1103/physreva.46.1038
Google Scholar