Columnar-to-Equiaxed Transition in SOLidification Processing (CETSOL): A Project of the European Space Agency (ESA) - Microgravity Applications Promotion (MAP) Programme

Article Preview

Abstract:

The main objective of the research project of the European Space Agency (ESA) - Microgravity Application Promotion (MAP) programme entitled Columnar-to-Equiaxed Transition in SOLidification Processing (CETSOL) is the investigation of the formation of the transition from columnar to equiaxed macrostructure that takes place in casting. Indeed, grain structures observed in most casting processes of metallic alloys are the result of a competition between the growth of several arrays of dendrites that develop under constrained and unconstrained conditions, leading to the CET. A dramatic effect of buoyancy-driven flow on the transport of equiaxed crystals on earth is acknowledged. This leads to difficulties in conducting precise investigations of the origin of the formation of the equiaxed crystals and their interaction with the development of the columnar grain structure. Consequently, critical benchmark data to test fundamental theories of grain structure formation are required, that would benefit from microgravity investigations. Accordingly, the ESA-MAP CETSOL project has gathered together European groups with complementary skills to carry out experiments and to model the processes, in particular with a view to utilization of the reduced-gravity environment that will be afforded by the International Space Station (ISS) to get benchmark data. The ultimate objective of the research program is to significantly contribute to the improvement of integrated modelling of grain structure in industrially important castings. To reach this goal, the approach is devised to deepen the quantitative understanding of the basic physical principles that, from the microscopic to the macroscopic scales, govern microstructure formation in solidification processing under diffusive conditions and with fluid flow in the melt. Pertinent questions are attacked by well-defined model experiments on technical alloys and/or on model transparent systems, physical modelling at microstructure and mesoscopic scales (e.g. large columnar front or equiaxed crystals) and numerical simulation at all scales, up to the macroscopic scales of casting with integrated numerical models.

You might also be interested in these eBooks

Info:

[1] M. Rappaz: International Materials Review 34 (1989) 93.

Google Scholar

[2] V. R. Voller, F. Porte-Agel: Journal of Computational Physics JCPH2001 - 0324.

Google Scholar

[3] J. D. Hunt: Materials Science and Engineering 65 (1984) 75.

Google Scholar

[4] Ch. -A. Gandin: Acta Materialia 48 (2000) 2483.

Google Scholar

[5] M. A. Martorano, C. Beckermann, Ch. -A. Gandin: Metallurgical and Materials Transactions 34A (2003) 1657.

Google Scholar

[6] H. Nguyen-Thi, B. H. Zhou, G. Reinhart, B. Billia, Q. S. Liu, C. W. Lan, T. Lyubimova, B. Roux: Solidification and Gravity '04 (2005). Eds A. Roosz, M. Rettenmayr, C. -H. Su, Z. Gácsi, Materials Science Forum, Trans Tech Publications Ltd, CH.

Google Scholar

[7] M. H. Burden, D. J. Hebditch, J. D. Hunt: J. Cryst. Growth 20 (1973) 121.

Google Scholar

[8] C. W. Lan, C. Y. Tu: J. Cryst Growth, 220 (2000) 619.

Google Scholar

[9] K. Zaïdat, T. Ouled-Khachroum, N. Mangelinck-Noël, G. Reinhart, M. -D. Dupouy, R. Moreau: Solidification and Gravity '04 (2005). Eds A. Roosz, M. Rettenmayr, C. -H. Su, Z. Gácsi, Materials Science Forum, Trans Tech Publications Ltd, CH.

Google Scholar

[10] R. Ananth, W. N. Gill: J. Crystal Growth 108 (1991) 173-89.

Google Scholar

[11] L. Sturz, G. Zimmermann: Solidification and Gravity '04 (2005). Eds A. Roosz, M. Rettenmayr, C. -H. Su, Z. Gácsi, Materials Science Forum, Trans Tech Publications Ltd, CH.

Google Scholar

[12] Ch. -A. Gandin: ISIJ International 40 (2000) 971.

Google Scholar

[13] S. McFadden, D. J. Browne, J. Banaszek: Solidification and Gravity '04 (2005). Eds A. Roosz, M. Rettenmayr, C. -H. Su, Z. Gácsi, Materials Science Forum, Trans Tech Publications Ltd, CH.

Google Scholar

[14] D. J. Browne, J. D. Hunt: Numerical Heat Transfer 45B (2004) 295.

Google Scholar

[15] N. Ahmad, H. Combeau, J. -L. Desbiolles, T. Jalanti, G. Lesoult, J. Rappaz, M. Rappaz and C. Stomp, Metall. Mater. Trans. 29A (1998) 617-630.

DOI: 10.1007/s11661-998-0143-9

Google Scholar

[16] G. Guillemot, Ch. -A. Gandin, H. Combeau: Solidification Processes and Microstructures: A Symposium in Honor of Prof. W. Kurz. Eds M. Rappaz, C. Beckermann, R. Trivedi, The Minerals, Metals and Materials Society, Warrendale, USA (2004) 157.

Google Scholar

[17] C. Y. Wang, A. Ahuja, C. Beckermann, H. C. de Groh III: Metall. Mater. Trans. 26B (1995) 111.

Google Scholar

[18] S. Ahuja, C. Beckermann, R. Zakhem, P. D. Weidman and H. C. de Groh III, in Micro/Macro Scale Phenomena in Solidification, ASME (1992). HTD-218, AMD-139 85-91.

Google Scholar

[19] Ch. -A. Gandin, G. Guillemot, B. Appolaire and N. T. Niane, Mater. Sci. Engng A342 (2003) 44-50.

Google Scholar

[20] C. Y. Wang and C. Beckerman, Metall. Mater. Trans. 27A (1996) 2754.

Google Scholar

[21] D. J. Hebditch and J. D. Hunt, Metall. Trans. 5 (1974) 1557.

Google Scholar

[22] D. J. Hebditch, Ph. D. thesis, Oxford University (1973).

Google Scholar

[23] J. -L. Desbiolles, Ph. Thévoz and M. Rappaz, in Modeling of Casting, Welding and Advanced Solidification Processes X, pp.245-252. T.M.S., Warrendale, Pennsylvania, USA (2003).

Google Scholar

[24] C. Beckermann, Int. Mater. Rev. 47 (2002) 243.

Google Scholar

[25] G. Lesoult, V. Albert, H. Combeau, D. Daloz, A. Joly, C. Stomp, G. U. Grün and P. Jarry, Conference IUMRS-ICAM'99, Beijing, China, (1999).

Google Scholar

[26] A. Ciobanas, F. Baltaretu, Y. Fautrelle: Solidification and Gravity '04 (2005). Eds A. Roosz, M. Rettenmayr, C. -H. Su, Z. Gácsi, Materials Science Forum, Trans Tech Publications Ltd, CH.

Google Scholar