Processing and Characterization of (1-x)(Na1/2Bi1/2)TiO3 - xLa(Mg1/2Ti1/2)O3 Ceramics

Abstract:

Article Preview

Lead-free relaxor ceramics based on sodium-bismuth titanate, (1-x)(Na1/2Bi1/2)TiO3 - xLa(Mg1/2Ti1/2)O3 [(1-x)NBT-xLMT] (0≤x≤0.25), were prepared by both the conventional mixed oxide method and by the Pechini route, and their crystal structure and dielectric properties were investigated. All the compositions studied were found to possess a rhombohedrally distorted crystal lattice at room temperature. A distortion degree of the unit cell decreases and its volume increases with LMT content. The temperature of the dielectric permittivity maximum does not change with increasing substitution rate. As x is increased, the frequency-dependent dielectric peaks are flattened. The compositional evolution of structure and dielectric characteristics of the ceramics obtained are analysed and discussed in respect to size, charge and polarizability of the cations involved.

Info:

Periodical:

Materials Science Forum (Volumes 514-516)

Edited by:

Paula Maria Vilarinho

Pages:

250-254

DOI:

10.4028/www.scientific.net/MSF.514-516.250

Citation:

A. N. Salak et al., "Processing and Characterization of (1-x)(Na1/2Bi1/2)TiO3 - xLa(Mg1/2Ti1/2)O3 Ceramics ", Materials Science Forum, Vols. 514-516, pp. 250-254, 2006

Online since:

May 2006

Export:

Price:

$38.00

[1] J. Ravez and A. Simon: J. Solid State Chem. Vol. 162 (2001), p.260.

[2] I.P. Raevski and S.A. Prosandeev: J. Phys. Chem. Solids Vol. 63 (2002), p. (1939).

[3] A. Simon, J. Ravez and M. Maglione: J. Phys.: Condens. Matter Vol. 16 (2004), p.963.

[4] A.N. Salak, V.V. Shvartsman, M.P. Seabra, A.L. Kholkin and V.M. Ferreira: J. Phys.: Condens. Matter Vol. 16 (2004), p.2785.

[5] A.N. Salak, M.P. Seabra and V.M. Ferreira: J. Amer. Ceram. Soc. Vol. 87 (2004), p.216.

[6] A.N. Salak, M.P. Seabra and V.M. Ferreira: Ferroelectrics - at press.

[7] G.O. Jones, J. Kreisel, V. Jennings, M.A. Geday, P.A. Thomas and A.M. Glazer: Ferroelectrics Vol. 270 (2002), p.191.

[8] A. Herabut and A. Safari: J. Amer. Ceram. Soc. Vol. 80 (1997), p.2954.

[9] H. Nagata, M. Yoshida, Y. Makiuchi and T. Takenaka: Jpn. J. Appl. Phys. Vol. 42 (2003), p.7401.

[10] J.H. Jeon: J. Eur. Ceram. Soc. Vol. 24 (2004), p.1045.

[11] G.O. Jones and P.A. Thomas: Acta Crystallogr., Sect. B: Struct. Sci. Vol. 58 (2002), p.168.

[12] J.R. Gomah-Pettry, S. Saïd, P. Marchet, J.P. Mercurio, J. Eur. Ceram. Soc. Vol. 24 (2004), p.1165.

[13] S.B. Park, W.K. Choo and J.W. Park: J. Eur. Ceram. Soc. Vol. 21 (2001), p.1661.

[14] N. Yasuda, H. Ohwa, J. Oohashi, K. Nomura, H. Terauchi, M. Iwata and Y. Ishibashi: J. Phys. Soc. Japan Vol. 66 (1997), p. (1920).

[15] N.M. Olekhnovich, N.P. Vyshatko, Yu.V. Radyush, A.N. Salak and V.M. Ferreira: J. Phys.: Condens. Matter Vol. 15 (2003), p.6879.

In order to see related information, you need to Login.