The Effect of Boundary Structure on the Mechanical Properties of Aluminium Alloys

Abstract:

Article Preview

The microstructure in heavily deformed metals can be characterized as a complex “mixture” of low and high angle boundaries. By careful annealing of such cold deformed conditions, ultra-fine grained materials can be obtained. This phenomenon has been known for long and utilised in the production of special aluminium sheet qualities, and has received new interest with the emergence of the equal channel angular pressing (ECAP) technique. This work reviews the mechanical properties resulting from plastic deformation and annealing of aluminium, looking at alloys which prior to annealing was subjected to both severe plastic deformation (ECAP) and more conventional deformation by cold rolling. The effect of the resulting microstructures on the subsequent work hardening properties are model, applying the new microstructural metal plasticity model (MMP-model) developed in Trondheim over the last decade.

Info:

Periodical:

Materials Science Forum (Volumes 519-521)

Edited by:

W.J. Poole, M.A. Wells and D.J. Lloyd

Pages:

63-70

DOI:

10.4028/www.scientific.net/MSF.519-521.63

Citation:

E. Nes et al., "The Effect of Boundary Structure on the Mechanical Properties of Aluminium Alloys", Materials Science Forum, Vols. 519-521, pp. 63-70, 2006

Online since:

July 2006

Export:

Price:

$38.00

[1] Z. Horita, T. Fujinami, M. Nemoto and T. Langdon, M. Trans. A, 31A, 691-701 (2000).

[2] J.S. Hayes, R. Keyte and P.B. Pragnell, Materials Science and Technology, 16 (2000), p.1259.

[3] L.R. Morris, H. Sang and D.M. Moore, Proceedings 4 th Internatinal Conference on the Strength of Metals and Alloys (ICSMA4), pp.131-135 (1976).

[4] D.J. Lloyd, Met. Sci., (14), 193-198, (1980).

[5] D.J. Lloyd, Acta Met. 25 (1977) 459-466.

[6] H. Westengen, Proc. 6 th Int. Conference on the Strength of Matals and Alloys (ICSMA6), Ed. R.C. Giftkin, pp.461-466, Pergamon Press, London (1982).

[7] B. Forbord, PhD-thesis, Norwegian University of Science and Technology, Trondheim (1999).

[8] B. Forbord, O. Daaland and E. Nes, Proceedings of the 6 th International Conference on Aluminum Alloys (ICAA6), eds T. Sato et al., pp.183-188, Toyohashi (1998).

[9] N. Hansen, Acta Met. 25 (1977) 863-869.

[10] N. Hansen, in: T. N Baker Yield (Ed. ), Flow and Fracture of Polycrystals, Applied Science Publisher, London, 1983, pp.311-348.

[11] H. Rossig, Diploma Thesis, Reihn Westfalen Technische Hochschule (1971). See also J. Hirsch, Materials Science Forum 242 (1997) 33-50.

[12] E. Nes, K. Marthinsen and B. Holmedal, Mater. Sci. Tech., 20, 1377-1382 (2004).

[13] G. Langford and M. Cohen, Trans. ASM 1969; 62: 623.

[14] F.R. Castro-Fernadez, C.M. Sellars and J.A. Whiteman. Mat. Sci. and Tech. 1990; 6: 453.

[15] K. Nord-Varhaug, B. Forbord, J. Benestad, T. Pettersen, B. Rønning, A. Bardal, S. Benum, K. Marthinsen and E. Nes, Materials Science Forum 2000; 331-337: 1387.

DOI: 10.4028/www.scientific.net/msf.331-337.1387

[16] E. Nes, B. Holmedal, E. Evangelista and K. Marthinsen, Mat. Sci. Eng., A 410-411, pp.178-182 (2005).

[17] F.J. Humphreys and H. M. Chan, Mat. Sci. Eng., pp.143-148 (1996).

[18] B. Forbord, O. Daaland and E. Nes, Proceedings of the 6 th International Conference on Aluminum Alloys (ICAA6), eds T. Sato et al., pp.189-194, Toyohashi (1998).

[19] B. Holmedal, Z. Metallkd. 96, pp.532-545 (2005).

[20] L.M. Brown and R.K. Ham, in Strengthening Methods in Crystals, (ed. by A. Kelly and R.P. Nicholson), 12-129; Amsterdam, Elsevier, (1971).

[21] M. F. Ashby, ibid, pp.137-190.

[22] E. Nes, K. Marthinsen and B. Rønning, Journal of Materials Processing Technology, 117, pp.333-340, (2001).

[22] K. Marthinsen and E. Nes, Mater. Sci. Tech. 17 (2001) 376-388.

[23] E. Nes and K. Marthinsen, Mater. Sci. Eng. A322 (2002) 176-193.

In order to see related information, you need to Login.