High Temperature Passive Oxidation Mechanism of CVD SiC

Abstract:

Article Preview

The passive oxidation mechanism of CVD SiC was discussed from experimental results with high-temperature thermogravimetry and thermodynamic analyses. The bubble formation temperature around 1900 K could be too low for an oxygen inward diffusion limited process but conform to a CO outward diffusion limited process. The parabolic rate constant (kp) had weak oxygen partial pressure (PO2) dependence, kp ∝ PO2 n where n = 0.09 to 0.12. These n values may be consistent with the CO outward diffusion limited process. The activation energy of kp obtained in the present study, 210 kJ/mol, could suggest a different mechanism from the well-approved oxygen molecule permeation limited process at lower temperatures below 1600 K. Amorphous phase was significantly contained in SiO2 scales formed in an N2-O2 atmosphere. No effect of the amorphous formation on kp was identified.

Info:

Periodical:

Materials Science Forum (Volumes 522-523)

Edited by:

Shigeji Taniguchi, Toshio Maruyama, Masayuki Yoshiba, Nobuo Otsuka and Yuuzou Kawahara

Pages:

27-36

DOI:

10.4028/www.scientific.net/MSF.522-523.27

Citation:

T. Goto "High Temperature Passive Oxidation Mechanism of CVD SiC", Materials Science Forum, Vols. 522-523, pp. 27-36, 2006

Online since:

August 2006

Authors:

Export:

Price:

$35.00

[1] N. S. Jacobson: J. Am. Ceram. Soc., Vol. 76 (1993), p.3.

[2] T. Narushima, T. Goto, T. Hirai and Y. Iguchi: Mater. Trans. JIM, Vol. 38 (1997), p.821.

[3] T. Narushima, T. Goto and T. Hirai: J. Am. Ceram. Soc., Vol. 72 (1989), p.136.

[4] T. Goto: J. Ceram. Soc. Jpn, Vol. 110 (2002), p.881.

[5] T. Goto and H. Hommma: J. Eur. Ceram. Soc., Vol. 22 (2002), p.2749.

[6] C. E. Ramberg and W. L. Worrell: J. Am. Ceram. Soc., Vol. 84 (2001), p.2607.

[7] L. U. J. T. Ogbuji and E. J. Opila: J. Electrochem. Soc., Vol. 142 (1995), p.925.

[8] P. J. Jorgensen, M. E. Wadworth and I. B. Culter: J. Am. Ceram. Soc., Vol. 43 (1960), 209.

[9] W. W. Pultz: J. Phys. Chem. , Vol. 71 (1967), p.4556.

[10] Z. Zheng, R. E. Tressler and K. E. Spear: J. Electrochem. Soc., Vol. 137 (1990) 2821.

[11] J. W. Hinze, W. C. Tripp and H. C. Graham: Mass Transport Phenomena in Ceramics (Plenum. Publ. New York 1975), p.409.

[12] E. Fitzer and R. Ebi: Silicon Carbide - 1973, Proc. 3rd Int. Conf. on Silicon Carbide (U. South Carolina Press, South Carolina 1973) p.320.

[13] C. E. Ramberg, K. E. Spear, R. E. Tressler and Y. Chinone: J. Electrochem. Soc., Vol. 142 (1995), L214.

[14] J. A. Costello and R. E. Tressler: J. Am. Ceram. Soc., Vol. 69 (1986), p.674.

[15] J. Rodriquez-Viejo, F. Sibiede and M. T. Clavaguera-Mora: J. Eur. Ceram. Soc., Vol. 13 (1994), p.167.

[16] C. E. Ramberg and W. L. Worrell: Proc. 9th Int. Conf. High Temp. Mater. Chem. Vol. 97-39 (Electrochem. Soc., Pennington 1997), p.839.

[17] L. U. Ogbuji, J. Mater. Sci., Vol. 16 (1981) 2753.

[18] L. Filipuzzi, R. Naslain and C. Jaussaud: J. Mater. Sci., Vol. 27 (1992), p.3330.

[19] R. C. A. Harris: J. Am. Ceram. Soc., Vol. 58 (1975), p.7.

[20] B. E. Deal and A. S. Grove: J. Appl. Phys. , Vol. 36 (1965), p.3770.

[21] K. L. Luthra: J. Am. Ceram. Soc., Vol. 74 (1991), p.1095.

[22] E. W. Sucov: J. Am. Ceram. Soc., Vol. 46 (1963), p.14.

In order to see related information, you need to Login.