Effect of Alloying Elements on Corrosion Resistance of Ni-Base Cast Alloys in Waste Incineration Environments

Abstract:

Article Preview

After examining practical structural materials for use in the high-temperature environments of waste incinerators, it was found that a Ni-Cr-W casting alloy is promising. However, the corrosion reaches its peak in the vicinity of 900°C. This peak is related to the behavior of chlorides that form in the interior of the alloy. As the chlorides continuously generate and decompose, the Cl recycles, accelerating corrosion. It is thought that when the temperature rises, the chlorides vaporize outside the alloy, suppressing Cl recycling and thus reducing the amount of corrosion. Adding Al to the alloy generates highly volatile AlCl3, making it possible to prevent the accumulation of chlorides in the vicinity of 900°C and lower the corrosion peak. As a result of conducting exposure testing for a year at an actual incinerator, it was demonstrated that adding Al is an effective way to improve corrosion resistance.

Info:

Periodical:

Materials Science Forum (Volumes 522-523)

Edited by:

Shigeji Taniguchi, Toshio Maruyama, Masayuki Yoshiba, Nobuo Otsuka and Yuuzou Kawahara

Pages:

555-562

Citation:

M. Noguchi et al., "Effect of Alloying Elements on Corrosion Resistance of Ni-Base Cast Alloys in Waste Incineration Environments", Materials Science Forum, Vols. 522-523, pp. 555-562, 2006

Online since:

August 2006

Export:

Price:

$38.00

[1] Y. Kawahara, K. Takahashi, Y. Nakagawa, T. Hosoda and T. Mizuko: CORROSION/2000, Paper No. 265, NACE International, Orando FL (2000).

[2] K. Imai, R. Nakajima, K. Sato, H. Matsui and T. Amemiya: Zairyo-to-Kankyo Vol. 51 (2002), p.483.

[3] T. Oshita and K. Naruse: Zairyo-to-Kankyo Vol. 51 (2002), p.487.

[4] S. Ono, T. Inaba, T. Irie and H. Kiuchi: J. Jpn. Inst. Met. Vol. 66 (2002), p.569.

[5] M. Yoshiba: J. Jpn. Soc. Waste Manegement Experts Vol. 13 (2002), p.38.

[6] K. Kawahara: Materia Jpn. (Bull. Jpn. Inst. Met. ) Vol. 41 (2002), p.190.

[7] M. Noguchi, H. Yakuwa, M. Miyasaka, M. Yokono, A. Matsumoto, K. Miyoshi, K. Kosaka and Y. Fukuda: Materials and Corrosion Vol. 51 (2000), p.774.

DOI: https://doi.org/10.1002/1521-4176(200011)51:11<774::aid-maco774>3.0.co;2-y

[8] Y. Fukuda, K. Kawahara, M. Nakamura, and T. Shimada: J. Jpn. Inst. Met. Vol. 66 (2002), p.549.

[9] Urabe and M. Yoshiba: J. Jpn. Inst. Met. Vol. 66 (2002), p.554.

[10] K. Kawahara: J. Jpn. Inst. Met. Vol. 66 (2002), p.583.

[11] Y. Sato, M. Hara, Y. Shinata and T. Narita: J. Jpn. Inst. Met. Vol. 61 (1997), p.56.

[12] Y. Sato, M. Hara and Y. Shinata: J. Jpn. Inst. Met. Vol. 59 (1995), p.1036.

[13] Y. Sato, M. Hara, Y. Shinata and T. Narita: J. Jpn. Inst. Met. Vol. 60 (1996), p.192.

[14] C. -J. Wang and C. -C. Li: Oxidation of Metals Vol. 61 (2004), p.485.

[15] Y. Oshima, M. Fukumoto, Y. Sato and M. Hara: Zairyo-to-Kankyo Vol. 53 (2004), p.451.

[16] M. Noguchi, K. Matsuoka and H. Fujimura: Zairyo-to-Kankyo Vol. 51 (2002), p.67.

[17] M. Noguchi, K. Matsuoka, H. Fujimura, S. Ueta and Y. Sawada: Zairyo-to-Kankyo Vol. 51 (2002), p.75.

[18] M. Noguchi, K. Matsuoka, H. Sakamoto, H. Fujimura, S. Ueta and Y. Sawada: Zairyo-toKankyo Vol. 54 (2005), p.218.

[19] High Temperature Oxidation and Hot Corrosion of Metals (Maruzen Publications, Japan 1982). p.16.