Powder Metallurgy of Nanostructured High Strength Materials

Abstract:

Article Preview

Nanostructured or partially amorphous Al- and Zr-based alloys are attractive candidates for advanced high-strength lightweight materials. The strength of such materials is often 2 – 3 times higher than the strength of commercial crystalline alloys. Further property improvements are achievable by designing multi-phase composite materials with optimized length scale and intrinsic properties of the constituent phases. Such alloys can be prepared by quenching from the melt or by powder metallurgy using mechanical attrition techniques. This paper focuses on mechanically attrited powders containing amorphous or nano-(quasi)crystalline phases and on their consolidation into bulk specimens. Selected examples of mechanical deformation behavior are presented, revealing that the properties can be tuned within a wide range of strength and ductility as a function of size and volume fraction of the different phases.

Info:

Periodical:

Materials Science Forum (Volumes 534-536)

Edited by:

Duk Yong Yoon, Suk-Joong L. Kang, Kwang Yong Eun and Yong-Seog Kim

Pages:

1405-1408

DOI:

10.4028/www.scientific.net/MSF.534-536.1405

Citation:

J. Eckert et al., "Powder Metallurgy of Nanostructured High Strength Materials", Materials Science Forum, Vols. 534-536, pp. 1405-1408, 2007

Online since:

January 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.