Powder Metallurgy of Nanostructured High Strength Materials

Article Preview

Abstract:

Nanostructured or partially amorphous Al- and Zr-based alloys are attractive candidates for advanced high-strength lightweight materials. The strength of such materials is often 2 – 3 times higher than the strength of commercial crystalline alloys. Further property improvements are achievable by designing multi-phase composite materials with optimized length scale and intrinsic properties of the constituent phases. Such alloys can be prepared by quenching from the melt or by powder metallurgy using mechanical attrition techniques. This paper focuses on mechanically attrited powders containing amorphous or nano-(quasi)crystalline phases and on their consolidation into bulk specimens. Selected examples of mechanical deformation behavior are presented, revealing that the properties can be tuned within a wide range of strength and ductility as a function of size and volume fraction of the different phases.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 534-536)

Pages:

1405-1408

Citation:

Online since:

January 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Gleiter: Prog. Mater. Sci. Vol. 33 (1989), p.223.

Google Scholar

[2] R.W. Siegel, in: Mechanical Properties and Deformation Behavior of Materials Having Ultrafine Microstructures, Edited by M. Nastasi, D. M. Parkin, and H. Gleiter, NATO ASI Series, Kluwer, Dordrecht (1993).

DOI: 10.1007/978-94-011-1765-4

Google Scholar

[3] A.S. Edelstein and R.C. Cammarata: Nanomaterials: Synthesis, Properties and Applications, Edited by IOP Publishing, Bristol (1996).

Google Scholar

[4] Nanostructured Materials: Processing, Properties and Potential Applications, Edited by C.C. Koch, Noyes Publications/William Andrew Publising, Norwich, NY (2002).

Google Scholar

[5] Y.H. Kim, A. Inoue and T. Masumoto: Mater. Trans. JIM Vol. 31 (1990), p.747.

Google Scholar

[6] A.P. Tsai, A. Inoue and T. Masumoto: Metall. Trans. A Vol. 19 (1988), p.1369.

Google Scholar

[7] A. Inoue, H.M. Kimura, K. Sasamori and T. Masumoto: Mater. Trans. JIM Vol. 36 (1995), p.6.

Google Scholar

[8] M. Seidel, J. Eckert, H.D. Bauer and L. Schultz, in: Grain Size and Mechanical Properties - Fundamentals and Applications, Edited by M. A. Otooni, R. W. Armstrong, N. J. Grant, and K. Ishizaki, Mater. Res. Soc. Symp. Proc., Materials Research Society, Warrendale, PA (1995).

Google Scholar

[9] F. Schurack, I. Börner, J. Eckert and L. Schultz: Sci. Forum Vol. 312-314 (1999), p.49.

Google Scholar

[10] F. Schurack, J. Eckert and L. Schultz: Mater. Sci. Eng. A Vol. 294-296 (2000), p.164.

Google Scholar

[11] M.H. Lee, J.H. Kim, J.S. Park, J.C. Kim, W.T. Kim and D.H. Kim, Scripta Mater. Vol. 50 (2004), p.1367.

Google Scholar

[12] S.C. Tjong and Z.Y. Ma, Mater. Sci. Eng. R Vol. 29 (2000), p.49.

Google Scholar

[13] P. Yu, K.B. Kim, J. Das, F. Baier, W. Xu and J. Eckert: Scipta Mater. Vol. 54 (2006), p.1445.

Google Scholar

[14] A. Inoue, W. Zhang and T. Zhang, Mater. Trans. Vol. 43 (2002), p. (1952).

Google Scholar

[15] A. Inoue, T. Zhang, N. Nishiyama, K. Ohba and T. Masumoto: Mater. Trans. JIM Vol. 34 (1993), p.1234.

Google Scholar

[16] X.H. Lin, W.L. Johnson and W.K. Rhim: Mater. Trans. JIM Vol. 38 (1997), p.473.

Google Scholar

[17] L.Q. Xing, J. Eckert, W. Löser and L. Schultz: Appl. Phys. Lett. Vol. 73 (1999), p.2110.

Google Scholar

[18] A. Inoue: Mater. Trans. JIM Vol. 36 (1995), p.866.

Google Scholar

[19] J. Eckert: Mater. Sci. Eng. A Vol. 226-228 (1997), p.364.

Google Scholar

[20] S. Scudino, C. Mickel, L. Schultz, J. Eckert, X. Y. Yang and D. J. Sordelet, Appl. Phys. Lett. Vol. 85 (2004), p.4349.

DOI: 10.1063/1.1818734

Google Scholar