Powder Metallurgy of Nanostructured High Strength Materials

Abstract:

Article Preview

Nanostructured or partially amorphous Al- and Zr-based alloys are attractive candidates for advanced high-strength lightweight materials. The strength of such materials is often 2 – 3 times higher than the strength of commercial crystalline alloys. Further property improvements are achievable by designing multi-phase composite materials with optimized length scale and intrinsic properties of the constituent phases. Such alloys can be prepared by quenching from the melt or by powder metallurgy using mechanical attrition techniques. This paper focuses on mechanically attrited powders containing amorphous or nano-(quasi)crystalline phases and on their consolidation into bulk specimens. Selected examples of mechanical deformation behavior are presented, revealing that the properties can be tuned within a wide range of strength and ductility as a function of size and volume fraction of the different phases.

Info:

Periodical:

Materials Science Forum (Volumes 534-536)

Edited by:

Duk Yong Yoon, Suk-Joong L. Kang, Kwang Yong Eun and Yong-Seog Kim

Pages:

1405-1408

Citation:

J. Eckert et al., "Powder Metallurgy of Nanostructured High Strength Materials", Materials Science Forum, Vols. 534-536, pp. 1405-1408, 2007

Online since:

January 2007

Export:

Price:

$38.00

[1] H. Gleiter: Prog. Mater. Sci. Vol. 33 (1989), p.223.

[2] R.W. Siegel, in: Mechanical Properties and Deformation Behavior of Materials Having Ultrafine Microstructures, Edited by M. Nastasi, D. M. Parkin, and H. Gleiter, NATO ASI Series, Kluwer, Dordrecht (1993).

DOI: https://doi.org/10.1007/978-94-011-1765-4

[3] A.S. Edelstein and R.C. Cammarata: Nanomaterials: Synthesis, Properties and Applications, Edited by IOP Publishing, Bristol (1996).

[4] Nanostructured Materials: Processing, Properties and Potential Applications, Edited by C.C. Koch, Noyes Publications/William Andrew Publising, Norwich, NY (2002).

[5] Y.H. Kim, A. Inoue and T. Masumoto: Mater. Trans. JIM Vol. 31 (1990), p.747.

[6] A.P. Tsai, A. Inoue and T. Masumoto: Metall. Trans. A Vol. 19 (1988), p.1369.

[7] A. Inoue, H.M. Kimura, K. Sasamori and T. Masumoto: Mater. Trans. JIM Vol. 36 (1995), p.6.

[8] M. Seidel, J. Eckert, H.D. Bauer and L. Schultz, in: Grain Size and Mechanical Properties - Fundamentals and Applications, Edited by M. A. Otooni, R. W. Armstrong, N. J. Grant, and K. Ishizaki, Mater. Res. Soc. Symp. Proc., Materials Research Society, Warrendale, PA (1995).

[9] F. Schurack, I. Börner, J. Eckert and L. Schultz: Sci. Forum Vol. 312-314 (1999), p.49.

[10] F. Schurack, J. Eckert and L. Schultz: Mater. Sci. Eng. A Vol. 294-296 (2000), p.164.

[11] M.H. Lee, J.H. Kim, J.S. Park, J.C. Kim, W.T. Kim and D.H. Kim, Scripta Mater. Vol. 50 (2004), p.1367.

[12] S.C. Tjong and Z.Y. Ma, Mater. Sci. Eng. R Vol. 29 (2000), p.49.

[13] P. Yu, K.B. Kim, J. Das, F. Baier, W. Xu and J. Eckert: Scipta Mater. Vol. 54 (2006), p.1445.

[14] A. Inoue, W. Zhang and T. Zhang, Mater. Trans. Vol. 43 (2002), p. (1952).

[15] A. Inoue, T. Zhang, N. Nishiyama, K. Ohba and T. Masumoto: Mater. Trans. JIM Vol. 34 (1993), p.1234.

[16] X.H. Lin, W.L. Johnson and W.K. Rhim: Mater. Trans. JIM Vol. 38 (1997), p.473.

[17] L.Q. Xing, J. Eckert, W. Löser and L. Schultz: Appl. Phys. Lett. Vol. 73 (1999), p.2110.

[18] A. Inoue: Mater. Trans. JIM Vol. 36 (1995), p.866.

[19] J. Eckert: Mater. Sci. Eng. A Vol. 226-228 (1997), p.364.

[20] S. Scudino, C. Mickel, L. Schultz, J. Eckert, X. Y. Yang and D. J. Sordelet, Appl. Phys. Lett. Vol. 85 (2004), p.4349.

DOI: https://doi.org/10.1063/1.1818734

Fetching data from Crossref.
This may take some time to load.