Effect of Li2O Addition on Piezoelectric Properties of NKN-5LT Ceramics

Article Preview

Abstract:

Recently alkali oxide materials, such as sodium - potassium niobate have drawn much attention due to their ultrasonic applicability and are also considered as promising candidates for a piezoelectric lead-free system. However, it is difficult to sinter such NKN-based materials via conventional sintering process. Therefore, in this study, dense 0.95(Na0.5K0.5)NbO3-0.05LiTaO3 (NKN-5LT) ceramics were developed by conventional sintering process. Sintering temperature was lowered by adding Li2O as a sintering aid. The electrical properties of NKN-5LT ceramics were investigated as a function of Li2O concentration. At the addition of 1 mol% Li2O, electromechanical coupling factor (kP) and piezoelectric coefficient (d33) of NKN-5LT ceramics were found to reach the highest values of 0.37 and 250 pC/N, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 534-536)

Pages:

1525-1528

Citation:

Online since:

January 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Jaffe, R. S. Roth and S. Marzullo: J. Appl. Phys. Vol. 25 (1954), p.809.

Google Scholar

[2] Y. Yamashita: Jpn. J. Appl. Phys. Vol. 33 (1994), p.4652.

Google Scholar

[3] R. E. Jaeger and L. Egerton: J. Am. Ceram. Soc. Vol. 45 (1962), p.209.

Google Scholar

[4] G. H. Haertling: J. Am. Ceram. Soc. Vol. 50 (1967), p.329.

Google Scholar

[5] R. Wang, R. Xie, T. Sekiya, Y. Shimojo, Y. Akimune, N. Hirosaki and M. Itoh: Jpn. J. Appl. Phys. Vol. 41 (2002), p.7119.

Google Scholar

[6] Y. Guo, K. Kakimoto and H. Ohsato: Mater. Lett. Vol. 59 (2005), p.241.

Google Scholar

[7] Y. -M. Chiang, G.W. Farrey and A.N. Soukhojak: Appl. Phys. Lett. Vol. 73 (1998), p.3683.

Google Scholar

[8] B. Chu, D. Chen and G. Li and Q. Yin: J. Eur. Ceram. Soc. Vol. 22 (2002), p.2115.

Google Scholar

[9] S. -E. Park and S. -J. Chung: J. Am. Ceram. Soc. Vol. 79 (1996), p.1290.

Google Scholar

[10] K. Kakimoto, I. Masuda, and H. Ohsato: Jpn. J. Appl. Phys. Vol. 42 (2003), p.6102.

Google Scholar

[11] Y. Guo, K. Kakimoto and H. Ohsato, Solid State Commun. Vol. 129 (2004), p.279.

Google Scholar

[12] D. Lin, D. Xiao, J. Zhu, P. Yu, H. Yan and L. Li, Mater. Lett. Vol. 58 (2004), p.615.

Google Scholar

[13] S. -Y. Chung and S. -J. L. Kang: J. Am. Ceram. Soc. Vol. 83 (2000), p.2828.

Google Scholar

[14] J. G. Fisher, M. -S. Kim, H. -Y. Lee and S. -J.L. Kang: J. Am. Ceram. Soc. Vol. 87 (2004), p.937.

Google Scholar

[15] B. K. Lee, S. Y. Chung, and S. -J. L. Kang: Acta Mater. Vol. 48 (2000), p.1575.

Google Scholar

[16] C. W. Park and D. Y. Yoon: J. Am. Ceram. Soc. Vol. 85 (2002), p.1585.

Google Scholar

[17] Y. -I. Jung, S. -Y. Choi, and S. -J. L. Kang: J. Am. Ceram. Soc. Vol. 86 (2003), p.2228.

Google Scholar

[18] S. -Y. Choi and S. -J. L. Kang: Acta Mater. Vol. 52 (2004), p.2937.

Google Scholar

[19] L. Egerton and D.M. Dillon: J. Am. Ceram. Soc. Vol. 42 (1959), p.438.

Google Scholar