The Sintering Behaviour of Fe-Mn-C Powder System, Correlation between Thermodynamics and Sintering Process, Mn Distribution and Microstructure

Abstract:

Article Preview

To study of the sintering behaviour of the Fe-0.8Mn-0.5C powder system the cylindrical specimens with a density of ~7.0 g/cc were sintered in container at the temperature of 11200C for 30 min in a gas mixture of 7%H2/93%N2 with the inlet dew point of -600C. The composition (CO/CO2- content) and the dew point of the flowing and “container micro-climate” atmospheres during the whole sintering cycle were monitored. It was shown, that carbothermical reduction and formation esp. CO/CO2 occurs in two different temperature ranges. Three peaks of dew point profile also can be distinguished during sintering cycle. Following sintering the changes of ferromanganese particles, Mn-content distribution and microstructures around the Mn-source were micro-analytical evaluated at cross-section of specimens using the SEM with EDX microanalyses. The results showed that manganese travels through porous iron matrix up to ~60 μm. The type of local microstructure constituents is determined by the local Mn- and C contents.

Info:

Periodical:

Materials Science Forum (Volumes 534-536)

Edited by:

Duk Yong Yoon, Suk-Joong L. Kang, Kwang Yong Eun and Yong-Seog Kim

Pages:

761-764

DOI:

10.4028/www.scientific.net/MSF.534-536.761

Citation:

E. Hryha and E. Dudrová, "The Sintering Behaviour of Fe-Mn-C Powder System, Correlation between Thermodynamics and Sintering Process, Mn Distribution and Microstructure", Materials Science Forum, Vols. 534-536, pp. 761-764, 2007

Online since:

January 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.