Plastic Deformation Behavior of Bulk Metallic Glass Composite Containing Spherical Ductile Crystalline Precipitates

Article Preview

Abstract:

Mechanical alloying (MA), super cooling process, etc. have been used to prepare amorphous phases, metastable solid solutions, nanocrystals, and so on. It is important to consolidate these powders for evaluating the physical properties, and for applications. On the other hand, shock compression can be used as an effective consolidation method for metastable material powders without recrystallization or decomposition. We had prepared metastable transition-metal system bulk alloys and compounds (Fe-Co, Fe-Cu, Fe-W, Co-Cu, Sm-Fe-N systems, etc) by using MA and shock compression. The Fe-Cu and Co-Cu metastable solid solutions showed a fit curve to the Slater-Pauling one. The Co-Cu metastable solid solution bulk alloy showed a magneto-resistance. The Fe-Co fine-grained bulk alloys show the higher coeicivity than that of molten alloy. In this paper, the preparation and magnetic properties of the metastable alloys (Fe-Co, Fe-Cu, Co-Cu systems) are reviewed, and the applications to materials science and engineering are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Pages:

1943-1950

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kato H, Inoue A. Mater Trans JIM 1997; 38: 793.

Google Scholar

[2] Choi-Yim H, Busch R, Koster U, Johnson W L. Acta Mater 47; 1999: 2455.

Google Scholar

[3] Choi-Yim H, Johnson W L. Appl. Phys. Lett. 1997; 71: 3808.

Google Scholar

[4] Conner R D, Dandliker R B, Johnson W L. Acta Mater 1998; 46: 6089.

Google Scholar

[5] Inoue A, Shen B L, Kashibo H, Kato H, Yavari A R. Acta Mater 2004; 52: 1631.

Google Scholar

[6] Inoue A, Shen B L, Kashibo H, Kato H, Yavari A R. Nature Mater 2, 661-663 (2003).

Google Scholar

[7] Hays C C, Kim C P, Johnson W L. Phys Rev Lett 2000; 84: 2901.

Google Scholar

[8] Fan C, Ott R T, Hufnage T C. Appl Phys Lett 2002; 81: 1020.

Google Scholar

[9] Hu X, Ng S C, Feng Y P, Li Y. Acta Mater 2003; 51: 561.

Google Scholar

[10] Tan H, Zhang Y, Li Y. Intermetallics 2002; 10: 1203.

Google Scholar

[11] Kuhn U, Eckert J, Mattern N, Schultz L. Appl Phys Lett 2002; 80: 2478.

Google Scholar

[12] Szuecs F, Kim C P, Johnson W L. Acta Mater 2001; 49: 1507.

Google Scholar

[13] Pekarskaya E, Kim C P, Johnson W L. J Mater Res 2001; 16: 2513.

Google Scholar

[14] Eckert J, Kühn U, Mattern N, He G, Gebert A. Intermetallics. 2002; 10: 1183.

Google Scholar

[15] G Y Sun, G Chen, C T Liu, G L Chen. Scripta Mater. 2006; 55:375-378.

Google Scholar

[16] Sun Guoyuan, Chen Guang, Chen Guoliang. Acta Metall Sinica. 2006; 42: 331.

Google Scholar

[17] G Y Sun, G Chen, G L Chen. Intermetallics. (Accepted).

Google Scholar

[18] Bian Z, Ahmad J, Zhang W, Inoue A. Mater Trans 2004; 45: 2346.

Google Scholar