Corrosion Behavior of Al-7wt% Si-1.5wt% Cu Severely Deformed by Equal-Channel Angular Pressing

Abstract:

Article Preview

In this study, an Al-7 wt% Si-1.5 wt% Cu alloy was subjected to severe plastic deformation (SPD) by an equal-channel angular pressing (ECAP) technique. The ECAP process was repetitively carried out up to 8 passes using a strain introduction method of route BC, at a temperature of 25 °C and a pressing rate of 0.33 mm s-1. Microstructures of the samples before and after ECAP were observed by a scanning electron microscopy (SEM). Electrochemical properties of the Al-Si-Cu alloy fabricated by ECAP have been investigated in a borate-boric acid buffer solution containing Cl¯ ions at pH 8.3 and 25 °C by potentiodynamic polarization test. Corrosion pits on the sample surface after anodic polarization were investigated by means of SEM. The anodic polarization showed that as-cast Al-Si-Cu alloy with plate-shaped Si particles has poor resistance against pitting corrosion comparing to quenched sample without ECAP. Pitting potentials of ECAPed Al-Si-Cu alloy samples were higher than that of the sample without ECAP. In the Al-Si-Cu alloy, the corrosion pits were found in the region of Si particles and the size of pits formed on the ECAPed samples became smaller than that without ECAP. It is considered that the improvement of the pitting resistance of ECAPed Al-Si-Cu alloy is due to homogenous distribution of spherical Si particles generated during ECAP process.

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

2892-2897

DOI:

10.4028/www.scientific.net/MSF.539-543.2892

Citation:

Z. G. Zhang et al., "Corrosion Behavior of Al-7wt% Si-1.5wt% Cu Severely Deformed by Equal-Channel Angular Pressing", Materials Science Forum, Vols. 539-543, pp. 2892-2897, 2007

Online since:

March 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.