Effect of Equal-Channel Angular Pressing (ECAP) on Creep in Aluminium Alloys

Article Preview

Abstract:

This paper examines the effect of equal-channel angular pressing (ECAP) on creep behaviour of pure aluminium, binary Al-0.2wt.%Sc alloy and ternary Al-3wt.%Mg-0.2wt.%Sc alloy. The ECAP was conducted at room temperature with a die that had a 90° angle between the channels and 8 repetitive ECAP passes followed route BC. Constant stress compression creep tests were performed at 473 K and stresses ranging between 16 to 80 MPa on ECAP materials and, for comparison purposes, on the initial coarse-grained materials. The results showed that the creep resistance of the ECAP processed Al-Sc and Al-Mg-Sc alloys was markedly deteriorated with respect to unpressed coarse-grained materials.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Pages:

2904-2909

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.M. Segal, Mater. Sci. Eng. A197 (1995) 157.

Google Scholar

[2] R.Z. Valiev, N.A. Krasilnikov and N.K. Tsenev, Mater. Sci. Eng. A137 (1991) 35.

Google Scholar

[3] R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov, Prog. Mater. Sci. 45 (2000) 103.

Google Scholar

[4] Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon, Acta Mater. 46 (1998) 3317.

Google Scholar

[5] V. Sklenicka, J. Dvorak and M. Svoboda, Mater. Sci. Eng. A387-389 (2004) 696.

Google Scholar

[6] V. Sklenička, J. Dvorak, M. Svoboda, P. Kral and B. Vlach, Mater. Sci. Forum, 482 (2005) 83.

Google Scholar

[7] V. Sklenicka, J. Dvorak, P. Kral, Z. Stonawska and M. Svoboda, Mater. Sci. Eng. A410-411 (2005) 408.

Google Scholar

[8] M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon, Mater. Sci. Eng. A256 (1998) 328.

Google Scholar

[9] Z. Horita, M. Furukawa, M. Nemoto, A.J. Barnes and T.G. Langdon, Acta Mater. 48 (2000) 3633.

Google Scholar

[10] J.C. Gibeling and W.D. Nix, Mater. Sci. Eng. 45 (1980) 123.

Google Scholar

[11] R. Lagneborg and B. Bergman, Metal. Sci. 10 (1976) 20.

Google Scholar

[12] V. Sklenička, P. Kral, L. Ilucova, I. Saxl, J. Dvorak and M. Svoboda, Mater. Sci. Forum 503-504 (2006) 245.

Google Scholar

[13] I. Saxl, V. Sklenicka, L. Ilucova, M. Svoboda and P. Kral, paper of the conference THERMEC' (2006).

Google Scholar

[14] V. Sklenicka, J. Dvorak, M. Svoboda, P. Kral, M. Kvapilova and Z. Horita, Ultrafine Grained Materials IV (Y.T. Zhu, T.G. Langdon, Z. Horita, M.J. Zehetbauer, S.L. Semiatun and T.C. Lowe, eds. ) TMS, Warrendale, PA, 2006, in print.

DOI: 10.3390/ma11050787

Google Scholar

[15] M.F. Ashby and L.M. Brown, Phil. Mag. 8 (1963) 1083.

Google Scholar

[16] E.A. Marquis and D. Seidman, Acta Mater. 49 (2001) (1909).

Google Scholar

[17] N.Q. Chinh, P. Szommer, Z. Horita and T.G. Langdon, Adv. Mater. 18 (2006) 34.

Google Scholar