Microstructural Features of 'Quenching and Partitioning': A New Martensitic Steel Heat Treatment

Abstract:

Article Preview

The microstructure following a new martensite heat treatment has been examined, principally by high-resolution microanalytical transmission electron microscopy and by atom probe tomography. The new process involves quenching to a temperature between the martensite-start (Ms) and martensite-finish (Mf) temperatures, followed by ageing either at or above, the initial quench temperature, whereupon carbon can partition from the supersaturated martensite phase to the untransformed austenite phase. Thus the treatment has been termed ‘Quenching and Partitioning’ (Q&P). The carbon must be protected from competing reactions, primarily carbide precipitation, during the first quench and partitioning steps, thus enabling the untransformed austenite to be enriched in carbon and largely stabilised against further decomposition to martensite upon final quenching to room temperature. This microstructural objective is almost directly opposed to conventional quenching and tempering of martensite, which seeks to eliminate retained austenite and where carbon supersaturation is relieved by carbide precipitation. This study focuses upon a steel composition representative of a TRIP-assisted sheet steel. The Q&P microstructure is characterised, paying particular attention to the prospect for controlling or suppressing carbide precipitation by alloying, through examination of the carbide precipitation that occurs.

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

4819-4825

Citation:

D.V. Edmonds et al., "Microstructural Features of 'Quenching and Partitioning': A New Martensitic Steel Heat Treatment", Materials Science Forum, Vols. 539-543, pp. 4819-4825, 2007

Online since:

March 2007

Export:

Price:

$38.00

[1] J.G. Speer, D.K. Matlock, B.C. De Cooman and J.G. Schroth: Acta Mater. Vol. 51 (2003), pp.2611-2622.

[2] J.G. Speer, A.M. Streicher, D.K. Matlock, F.C. Rizzo and G. Krauss: Austenite Formation and Decomposition Eds: E.B. Damm and M. Merwin (TMS, Warrendale, PA, USA 2003), pp.505-522.

[3] D.K. Matlock, V.E. Brautigam and J.G. Speer: THERMEC 2003 (Trans Tech Publications, Uetikon-Zurich, Switzerland 2003), pp.1089-1094.

[4] J.G. Speer, F.C. Rizzo, D.K. Matlock and D.V. Edmonds: Materials Research, Vol. 8, No. 4 (2005), pp.417-423.

[5] J.G. Speer, D.V. Edmonds, F.C. Rizzo and D.K. Matlock: Current Opinion in Solid-State and Materials Science Vol. 8 (2004), pp.219-237.

[6] A.M. Streicher, J.G. Speer, D.K. Matlock and B.C. De Cooman: Advanced High-Strength Sheet Steels for Automotive Applications Ed: J.G. Speer (AIST, Warrendale, PA, USA 2004), pp.51-62.

[7] F.C. Rizzo, D.V. Edmonds, K. He, J. Speer and D.K. Matlock: Solid-Solid Phase Transformations in Inorganic Materials Ed: J. Howe et al. (TMS, Warrendale, PA, USA 2005).

[8] A. Clarke, J.G. Speer, D.K. Matlock, F.C. Rizzo, D.V. Edmonds and K. He: Solid-Solid Phase Transformations in Inorganic Materials Ed: J. Howe et al. (TMS, Warrendale, PA, USA 2005).

[9] D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock and J.G. Speer: International Conference Martensitic Transformations, ICOMAT'05, Shanghai, China (2005).

[10] R.F. Hehemann: Phase Transformations (ASM, Metals Park, OH, USA 1970), pp.397-432.

[11] H.K.D.H. Bhadeshia and D.V. Edmonds: Metall. Trans. Vol. 10A (1979), pp.895-907.

[12] H.K.D.H. Bhadeshia and D.V. Edmonds: Metal Sci. J. Vol. 17 (1983), pp.411-419, 420-425.

[13] V.T.T. Miihkinen and D.V. Edmonds: Mater. Sci. Technol. Vol. 3 (1987), pp.422-431, 432440, 441-449.

[14] F.G. Caballero, H.K.D.H. Bhadeshia: K.J.A. Mawella, D.G. Jones, and P. Brown, Mater. Sci. Technol. Vol. 17 (2001), pp.512-522.

[15] Advanced High-Strength Sheet Steels for Automotive Applications Ed: J.G. Speer (AIST, Warrendale, PA, USA 2004).

[16] V. Franetovic, M.M. Shea and E.F. Ryntz: Mater. Sci. Eng. Vol. 96 (1987), pp.231-245.

[17] N. Darwish and R. Elliott: Mater. Sci. Technol. 9 (1993), pp.572-602.

[18] C. Federici, S. Maggi and S. Rigoni: 1 st International Conference Super-High Strength Steels (Associazione Italiana di Metallurgia and Centro Sviluppo Materiali, Rome, Italy 2005).

[19] M. Hillert and J. Agren: Scripta Mater. Vol. 50 (2004), pp.697-699.

[20] J.G. Speer, D.K. Matlock, B.C. De Cooman and J.G. Schroth: Scripta Mater. Vol. 52 (2005), pp.83-85.

[21] M. Hillert and J. Agren: Scripta Mater. Vol. 52 (2005), pp.87-88.

[22] G. Krauss: Steels: Heat Treatment and Processing Principles (ASM International, Metals Park, OH, USA 1990).

[23] H.K.D.H. Bhadeshia: Acta Metall. Vol. 28 (1980), pp.1103-1114.

[24] A. Borgenstam, A. Engstron, L. Hoglund and J. Agren: J. Phase Equilibria Vol. 21 (2000), pp.269-280.

[25] D. V. Edmonds, K. He, F. C. Rizzo, A. Clarke, D. K. Matlock and J. G. Speer: 1 st International Conference Super-High Strength Steels (Associazione Italiana di Metallurgia (AIM) and Centro Sviluppo Materiali (CSM), Rome, Italy 2005).

[26] M.K. Miller: Atom Probe Tomography (Kluwer Academic/Plenum Press, New York, NY, USA 2000), pp.28-35, 158-160.

[27] W.S. Owen: Trans ASM Vol. 46 (1954), pp.812-829.

[28] J. Gordine and I. Codd: J. Iron Steel Inst. Vol. 207 (1969), pp.461-467.

[29] W. C. Leslie and G.C. Rauch: Metall. Trans. Vol. 9A (1978), pp.343-349.

[30] F.L.H. Gerdemann: Microstructure and Hardness of 9260 Steel Heat-Treated by the Quenching and Partitioning Process (Diploma Thesis, Aachen University of Technology, 2004).

Fetching data from Crossref.
This may take some time to load.