Multi-Scale Numerical-Experimental Analysis of Failure in Solder Alloys

Abstract:

Article Preview

The past years have triggered considerable scientific efforts towards the predictive analysis of the reliability of solder connections in micro-electronics. Undoubtedly, the replacement of the classical Sn-Pb solder alloy by a lead-free alternative constitutes the main motivation for this. This paper concentrates on the theoretical, computational and experimental multi-scale analysis of the microstructure evolution and degradation of the conventional solder material Sn-Pb and its most promising lead-free alternative, a Sn-Ag-Cu (SAC) alloy. Special attention is given to the thermal anisotropy of bulk SAC and the interfacial fatigue failure of SAC interconnects.

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

66-73

DOI:

10.4028/www.scientific.net/MSF.539-543.66

Citation:

M.G.D. Geers et al., "Multi-Scale Numerical-Experimental Analysis of Failure in Solder Alloys", Materials Science Forum, Vols. 539-543, pp. 66-73, 2007

Online since:

March 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.