Multi-Scale Numerical-Experimental Analysis of Failure in Solder Alloys

Article Preview

Abstract:

The past years have triggered considerable scientific efforts towards the predictive analysis of the reliability of solder connections in micro-electronics. Undoubtedly, the replacement of the classical Sn-Pb solder alloy by a lead-free alternative constitutes the main motivation for this. This paper concentrates on the theoretical, computational and experimental multi-scale analysis of the microstructure evolution and degradation of the conventional solder material Sn-Pb and its most promising lead-free alternative, a Sn-Ag-Cu (SAC) alloy. Special attention is given to the thermal anisotropy of bulk SAC and the interfacial fatigue failure of SAC interconnects.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Pages:

66-73

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] EU: Directive 2002/95/EC, Official Journal of the European Union, 37, (2003), pp.19-23.

Google Scholar

[2] P. Goodman, P. Strudwick and R. Skipper: Reliability and failure analysis ERA report 2004-0603, ERA Technology (2004).

Google Scholar

[3] R.J.L.M. Ubachs, P.J.G. Schreurs and M.G.D. Geers: Jnl. Mech. Phys. Solids Vol. 52 (2004), pp.1763-1792.

Google Scholar

[4] M.A. Matin, W.P. Vellinga and M.G.D. Geers: Acta Mater. Vol. 52 (2004), pp.3475-3482.

Google Scholar

[5] P. Perzyna: Adv. Applied Mech. Vol 11 (1971), pp.313-354.

Google Scholar

[6] P. Perzyna: Plasticity today: Modelling, methods and applications, Elsevier (1985), pp.675-679.

Google Scholar

[7] R.J.L.M. Ubachs, P.J.G. Schreurs and M.G.D. Geers: Int. Jnl. Sol. Struc. Vol. 42 (2005), pp.2533-2558.

Google Scholar

[8] S.H.A. Boers, P.J.G. Schreurs and M.G.D. Geers: Int. Jnl. Sol. Struc. Vol. 42 (2005), pp.4154-4178.

Google Scholar

[9] J. Mediavilla, R.H.J. Peerlings and M.G.D. Geers: Eng. Frac. Mech. Vol. 73 (2006), pp.895-916.

Google Scholar

[10] W.P. Mason and H. Bommel: Journal of the Acoustic Society Vol. 28 (1956), p.930.

Google Scholar

[11] W.B. Pearson: A handbook of lattice spacings and structure of metals and alloys (1958).

Google Scholar

[12] M.A. Matin, E.W.C. Coenen, W.P. Vellinga and M.G.D. Geers: Scripta Mater. Vol. 53 (2005), pp.927-932.

DOI: 10.1016/j.scriptamat.2005.06.034

Google Scholar

[13] R.L.J.M. Ubachs: Thermomechanical modelling of microstructure evolution in solder alloys, PhD thesis, Eindhoven University of Technology, (2005).

Google Scholar

[14] A. Sharif, Y.C. Chan: Jnl. Mater. Sci; Mater. Electr. Vol. 16 (2005), pp.153-158.

Google Scholar

[15] M. Erinc, P.J.G. Schreurs, G.Q. Zhang and M.G.D. Geers: Jnl. Mater. Sci; Mater. Electr. Vol. 16 (2005), pp.693-700.

Google Scholar

[16] A. Abdul-Baqi, P.J.G. Schreurs and M.G.D. Geers: Int. J. of Sol. Struc. Vol. 42, (2005), pp.927-942.

Google Scholar

[17] O. Nguyen, E.A. Repetto, M. Ortiz and R.A. Radovitzky: Int. J. Fracture Vol. 110 (2001), pp.351-369.

DOI: 10.1023/a:1010839522926

Google Scholar

[18] G.Y. Jang, J.W. Lee and J.G. Duh: Jnl. Elec. Mater. Vol. 33 (2004), pp.1103-1110.

Google Scholar

[19] S. Wiese, K.J. Wolter: Microelectronics Reliability. Vol. 44 (2004), p.1923-(1931).

Google Scholar