Advanced Giant Magnetostrictive Alloys and Application in Actuators for Active Vibration Control

Article Preview

Abstract:

Co and Si were selected as substitutes to improve performance of TbDyFe giant magnetostrictive alloys for special purpose, respectively. The results showed that the Co-doped Tb0.36Dy0.64Fe2 alloys can possess giant magnetostriction over a wide temperature range from -80 to 100 . Optimum magnetostriction, high electrical resistivity and improved corrosion resistance was obtained in Tb0.3Dy0.7(Fe1-xSix)1.95 system. High performance grain-aligned rods with <110> preferred orientation have been successfully prepared by zone melting unidirectional solidification. This paper also presents the design and fabrication of Giant Magnetostrictive Actuator (GMA) for active vibration control with oriented TbDyFe rods. Experimental results showed that the GMA possesses good static and dynamic performance. Excellent damping effect, 20-30 dB under the frequency range from 10 Hz to 120 Hz was obtained.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 546-549)

Pages:

2143-2150

Citation:

Online since:

May 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. E. Clark, Ferromagnetic Materials I, edited by E. P. Wohlfarth (North-Holland, Amsterdam, 1980), p.531.

Google Scholar

[2] D. kendall, and A. R. Piercy, J. Appl. Phys., 73 (1993) p.6174.

Google Scholar

[3] Yan BD, Warren GW, Kim MH, Barnard JA. J Appl Phys., 67, (1990) p.5310.

Google Scholar

[4] A. E. Clark, J. P. Teter, and M. Wun-Fogle: J. Appl. Phys., 69 (1991), p.5771.

Google Scholar

[5] A. E. Clark, J. P. Teter, and O. D. McMasters: IEEE Trans. Magn., MAG-23 (1987), p.3526.

Google Scholar

[6] Z. J. Guo, Z. D. Zhang, B. W. Wang, X. G. Zhao, D. Y. Geng and W. Liu: J. Phys. D: Appl. Phys., 34 (2001), p.884.

Google Scholar

[7] T. Y. Ma, C. B. Jiang, X. Xu, H. Zhang, and H. B. Xu: J. Magn. Magn. Mater., 292 (2005), p.317.

Google Scholar

[8] K. Prajapati, A. G. Jenner, M. P. Schulze, R. D. Greenough, J. Appl. Phys., 73 (1993), p.6171.

Google Scholar

[9] P. P. Pulvirenti, D. C. Jiles, R. D. Greenough, and I. M. Reed: J. Appl. Phys., 79 (1996) p.6219.

Google Scholar

[10] Maliska AM, Klein AN, Souza AR. Surf Coat Technol., 70, (1995) p.175.

Google Scholar

[11] J. D. Verhoeven, E. D. Gibson, O. D. McMasters, and H. H. Baker: Metall. Trans. A, 18A (1987), p.223.

Google Scholar

[12] Y. Zhao, C. B. Jiang, H. Zhang, and H. B. Xu: J. Alloy. Compd., 354 (2003), p.263.

Google Scholar

[13] O. Bonino, P. De Rango, R. Tournier: J. Magn. Magn. Mater., 212 (2000), p.225.

Google Scholar

[14] G. H. Wu, X. G. Zhao, J. H. Wang, J. Y. Li, K.C. Jia, and W. S. Zhan: Appl. Phys. Lett., 67 (1995), p. (2005).

Google Scholar

[15] M.J. Brennan, J. Garcia-Bonito, S.J. Elliott, A. David, and R. J. Pinnington: Smart Mater. Struct., 8 (1999), p.145.

Google Scholar

[16] T.L. Zhang, C.B. Jiang, H. Zhang, and H.B. Xu: Smart Mater. Struct., 13 (2004), p.473.

Google Scholar

[17] T.L. Zhang, C.B. Jiang, X.L. Liu, H. Zhang, and H.B. Xu: Smart Mater. Struct., 14 (2005), p. N38.

Google Scholar

[18] L. H. Xu, C. B. Jiang, and H. B. Xu: Appl. Phys. Lett., submitted.

Google Scholar

[19] L. H. Xu, C. B. Jiang, and H. B. Xu: Scrip. Mater., submitted.

Google Scholar

[20] E. Gratz and M. J. Zuckerman, in Handbook on Physics and Chemistry of Rare Earths, Amsterdam, Chap. 42, (1982), p.117.

Google Scholar

[21] L. Wu, W. S. Zhan, X. C. Chen: J. Alloy Compd., 225 (1997), p.236.

Google Scholar

[22] T. Y. Ma, C. B. Jiang, and H. B. Xu: Appl. Phys. Lett., 86 (2005), p.162505.

Google Scholar