The Influence of the Extreme Fluences of 8 MeV Protons on Characteristics of SiC Nuclear Detectors Produced by Al Implantation

Abstract:

Article Preview

The charge collection efficiency (ССЕ) of SiC-detectors preliminarily irradiated with 8 MeV protons at a fluence of 1014 cm-2 has been studied. Nuclear spectrometric techniques with 5.4 MeV α-particles were employed to test the detectors. The concentration of primarily created defects was estimated to be 4×1016 cm-3. A strong compensation of SiC was observed, which allowed connection of the structure in the forward mode. The experimental data obtained were processed using a simple two-parameter model of signal formation. The model makes it possible to separate the contributions of electrons and holes to the ССЕ. An additional irradiation at a fluence of 2×1014 cm-2 reduced the ССЕ value by a factor of 2 and gave rise to polarization. The latter indicates that radiation-induced centers are not only actively involved in carrier localization (with a decrease in the lifetime), but also in transformation of the electric field within the detector.

Info:

Periodical:

Materials Science Forum (Volumes 556-557)

Edited by:

N. Wright, C.M. Johnson, K. Vassilevski, I. Nikitina and A. Horsfall

Pages:

961-964

DOI:

10.4028/www.scientific.net/MSF.556-557.961

Citation:

A. M. Ivanov et al., "The Influence of the Extreme Fluences of 8 MeV Protons on Characteristics of SiC Nuclear Detectors Produced by Al Implantation", Materials Science Forum, Vols. 556-557, pp. 961-964, 2007

Online since:

September 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.