Grain Growth Behavior and Characteristics of Multiphase Ceramic Composites Fabricated by Organic-Inorganic Solution Technique

Abstract:

Article Preview

Multi-component ceramic composites consisting of two, three and four phases, based on duplex microstructures of zirconia and alumina, were fabricated by a polymer complexation route employing polyethylene glycol (PEG) as a polymeric carrier. The polymer complexation route provided porous and soft powders and they were sintered after a simple ball milling process. In this study, the microstructures and flexural strengths of the multi-component (Al2O3-ZrO2-Y2O3-SrO) ceramic composites were examined on the processing variations of mole ratio and sintering temperature. The composites showed various grain morphologies according to the sintering temperature, and flexural strength of 410 MPa was obtained in the Al2O3·ZrO2·0.5Y2O3·0.4SrO composite sintered at 1600 °C for 1 h. In particular, needle-shape grains were observed in the four-component composites sintered at 1500 °C.

Info:

Periodical:

Materials Science Forum (Volumes 558-559)

Edited by:

S.-J.L. Kang, M.Y. Huh, N.M. Hwang, H. Homma, K. Ushioda and Y. Ikuhara

Pages:

1249-1253

DOI:

10.4028/www.scientific.net/MSF.558-559.1249

Citation:

S. J. Lee "Grain Growth Behavior and Characteristics of Multiphase Ceramic Composites Fabricated by Organic-Inorganic Solution Technique", Materials Science Forum, Vols. 558-559, pp. 1249-1253, 2007

Online since:

October 2007

Authors:

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.