Ultrasonic Attenuation Properties of Glassy Alloys in Views of Complex Viscoelasticity

Article Preview

Abstract:

Using ultrasonics, acoustic characteristics of Pd40Cu30P20, Zr55Cu30Al10Ni5, Zr65Pd12.5Ni10Al7.5 Cu5, Cu55Zr30Ti10Pd5, Cu45Zr20Hf25Ag10 and Ti41.5Cu42.5Ni7.5Hf5Zr2.5Sn1 glassy alloys were examined in terms of complex elasticity. The order of bulk modulus (K), Lamè parameter (λ ), Young (E ) and shear (G ) moduli of the glassy alloys is monopoltical character of glassy alloys, except for polymers and rubbers. For metals and alloys, ceramics, polymers and glassy alloys, Poison’s ratio correlates well to ratio G /K. Complex elasticity indicates that viscoelasticity of the glassy alloys is predominated by volumetric motion.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 561-565)

Pages:

1287-1290

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Klement, R.H. Willens & P. Duwez., Nature, 187, 869 (1960).

Google Scholar

[2] R.B. Pond & R. Maddin, Trans. Met. Soc. AIME, 245, 2475 (1969).

Google Scholar

[3] P. Chaudhari. & D. Turnbull, Science, 199, 6 Jan., 11 (1978).

Google Scholar

[4] A. Inoue, K. Kita, T. Zhang & T, Masumoto, Trans. JIM., 30, 722 (1989).

Google Scholar

[5] A. Makino, A. Inoue and T. Mizushima, Mater. Trans. JIM, 41, 1471 (2000).

Google Scholar

[6] M. Fukuhara, A. Kawashima, S. Yamaura and A. Inoue, Appl. Phys. Lett., 90, 203111(2007).

Google Scholar

[7] C. Park, M. Saito, Y. Waseda, N. Nishiyama and A. Inoue , Mater. Trans. JIM, 40, 491 (1999).

Google Scholar

[8] A. Van Den Beulel and J. Sietsma, Acta Metall. Mater., 38, 383-9 (1990).

Google Scholar

[9] S. -H. Shen, H. -T. Chien, A.C. Raptis, IEEE Ultrason. Symp., 43, 453 (1996).

Google Scholar

[10] M. Fukuhara and T. Tsubouchi, Chem. Phys. Lett., 371, 184 (2003).

Google Scholar

[11] M. Fukuhara, F. Yin and K. Kawahara, Phys. Stat. Sol. (a), 201, 454 (2004).

Google Scholar

[12] M. Fukuhara, M. Yagi & A. Matsuo, Phys. Rev., B65, 224210 (2002).

Google Scholar

[13] M. Fukuhara, A. Inoue and N. Nishiyama, Appl. Phys. Lett., 89, 101903 (2006).

Google Scholar

[14] M. Fukuhara, F. Jia, W. Zhang and A. Inoue, Phys. Stat. Sol. (a), 203, 3685 (2006).

Google Scholar

[15] R. Kubo in Elasticity in Rubber (Japanese), p.78 (Shkabo, Tokyo, 1996).

Google Scholar

[16] A.W. Nolle, P.W. Sieck, J. Appl. Phys., 23, 888 (1952).

Google Scholar

[17] A. Chakravartula and K. Komvopoulos, Appl. Phys. Lett., 88, 131901(2006). 0 2000 4000 6000 8000 10000 12000 14000 0. 36 0. 38 0. 4 0. 42 0. 44 0. 46 Poisson's Ratio Dynamic Viscosit y (Pas).

Google Scholar