Fabrication of Ni52.5Nb10Zr15Ti15Pt7.5 Bulk Metallic Glassy Matrix Composite Containing Dispersed ZrO2 Particulates by Spark Plasma Sintering

Article Preview

Abstract:

Spark plasma sintering (SPS), as a developed rapid sintering technique, has a great potential for producing larger metallic glassy alloy specimens in a variety of shapes than those fabricated by casting methods, and can readily produce composites by dispersing crystalline particles in the glassy matrix. In this study, the Ni52.5Nb10Zr15Ti15Pt7.5 bulk metallic glassy matrix composites dispersed homogeneously with ceramics ZrO2 particulates were fabricated by the SPS process. The plastic ductility of the Ni52.5Nb10Zr15Ti15Pt7.5 glassy matrix composites was improved by adding ZrO2 particulates into the glassy alloy. The matrix of the fabricated composites maintained a glassy phase after the SPS process.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 561-565)

Pages:

1291-1294

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Inoue: Acta Mater. 48 (2000), p.279.

Google Scholar

[2] A. Inoue and A. Takeuchi: Mater. Sci. Eng. A 375-377 (2004), p.16.

Google Scholar

[3] H. Chen, Y. He, G.J. Shiftlet and S.J. Poon: Nature 367 (1994), p.541.

Google Scholar

[4] A.L. Greer: Science 267 (1995), p. (1947).

Google Scholar

[5] V. Mamedov: Powder Metall. 45 (2002), p.322.

Google Scholar

[6] Z.A. Munir, U. Anselmi-Tamburini and M. Ohyanagi: J. Mater. Sci. 41 (2006), p.763.

Google Scholar

[7] M. Tokita: Mater. Sci. Forum 308-311 (1999), p.83.

Google Scholar

[8] G.Q. Xie, D.V. Louzguine-Luzgin, H. Kimura and A. Inoue: Mater. Trans. 48 (2007), p.158.

Google Scholar

[9] G.Q. Xie, D.V. Louzguine-Luzgin, F. Wakai, H. Kimura and A. Inoue: submitted to Mater. Sci. Eng. B (2007).

Google Scholar

[10] A. Inoue, W. Zhang and T. Zhang: Mater. Trans. 43 (2002), p. (1952).

Google Scholar

[11] S. Pang, T. Zhang, K. Asami and A. Inoue: Mater. Sci. Eng. A 375-377 (2004), p.368.

Google Scholar

[12] D.V. Louzguine-Luzgin, T. Shimada and A. Inoue: Intermetallics 13 (2005), p.1166.

Google Scholar

[13] G.Q. Xie, D.V. Louzguine-Luzgin, H. Kimura and A. Inoue: Appl. Phys. Lett. 90 (2007), 241902.

Google Scholar

[14] G.Q. Xie, O. Ohashi, M. Song, K. Furuya and T. Noda: Metall. Mater. Trans. A 34 (2003), p.699.

Google Scholar

[15] R.D. Conner, H. Choi-Yim and W.L. Johnson: J. Mater. Res. 14 (1999), p.3292.

Google Scholar

[16] H. Choi-Yim, B. Busch, U. Köster and W.L. Johnson: Acta Mater. 47 (1999), p.2455.

Google Scholar