Multi-Scale Modeling of the Corrosion of Metals under Atmospheric Corrosion

Article Preview

Abstract:

A holistic model of the atmospheric corrosion of metals is being developed. The model is based on integrating modules that define such processes as marine aerosol production by oceans and breaking surf, transport of marine aerosols across landscapes, deposition of aerosols onto structures, cleaning of surfaces by wind and rain, and the wetting and drying of surfaces throughout surface temperature and relative humidity cycles. The integration of these modules into a software framework enables the user to extract accurate estimates of surface conditions for structures located at any geographical location in Australia. Current research is aimed at developing a more fundamental approach to estimating corrosion based on the response of a metal to its environment.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 561-565)

Pages:

2209-2212

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Atteraas and S. Haagenrud, in Atmospheric Corrosion, Ed. W.H. Ailor, New York, John Wiley & Son (1982) pp.873-891.

Google Scholar

[2] M. Benarie and F.L. Lipfert, Atmos. Environ., 20(10) (1986) 1947-(1958).

Google Scholar

[3] F. Mansfeld, in Atmospheric Corrosion, Ed. W.H. Ailor, New York, John Wiley & Sons (1982) pp.139-160.

Google Scholar

[4] J.W. Spence and F.H. Haynie, in Corrosion Testing and Evaluation: Silver Anniversary Volume, ASTM STP 1000, ASTM, Philadelphia (1990) pp.208-224.

Google Scholar

[5] S.B. Lyon, C.W. Wong and P. Ajiboye, in Atmospheric Corrosion, Eds W.W. Kirk and H.H. Lawson, ASTM STP 1239, ASTM, Philadelphia (1995).

Google Scholar

[6] T.E. Graedel: Corros. Sci., 38(12) (1996) 2153-2180.

Google Scholar

[7] I.S. Cole, D.A. Paterson and W.D. Ganther, Corros. Engg, Sci. & Technol., 38(2) (2003) 129- 134.

Google Scholar

[8] I.S. Cole, W.D. Ganther, D.A. Paterson, G.A. King, S.A. Furman and D. Lau, Corros. Engg, Sci. & Technol., 38(4) (2003) 259-266.

Google Scholar

[9] I.S. Cole, D.A. Paterson, W.D. Ganther, B. Hinton, G. McAdam, M. McGechie, R. Jeffery, L. Chotimongkol, C. Bhamornsut, N.V. Hue and S. Purwadaria, Corros. Engg, Sci. & Technol., 38(4) (2003) 267-274.

DOI: 10.1179/147842203225008921

Google Scholar

[10] W.A. McKay, J.A. Garland, D. Livesley, C.M. Halliwell and M.I. Walker, Atmos. Environ., 28 (1994) 3299-309.

Google Scholar

[11] I.S. Cole and D.A. Paterson, Corros. Engg, Sci. & Technol. 39(2) (2004), 125-130.

Google Scholar

[12] I.S. Cole, D. Lau and D.A. Paterson, Corros. Engg, Sci. & Technol. 39(3) (2004), 209 -214.

Google Scholar

[13] I.S. Cole, W.Y. Chan, G.S. Trinidad and D.A. Paterson, Corros. Engg, Sci. & Technol., 39(1) (2004) 89-96.

Google Scholar

[14] I.S. Cole and D.A. Paterson, Corros. Engg, Sci. & Technol. 41(1) (2006), 67-76.

Google Scholar

[15] I.S. Cole and W.D. Ganther. Corros. Engg, Sci. & Technol. 40(4) (2005), 328-336.

Google Scholar

[16] I.S. Cole, W. D Ganther, J.D. Sinclair, D. Lau and D.A. Paterson, J. Electrochem. Soc. 151 (12), (2004), B627-B635.

Google Scholar

[17] I.S. Cole and W.D. Ganther, Corros. Engg, Sci. & Technol. 41(2), (2006), 161-167.

Google Scholar

[18] T.H. Muster and I.S. Cole, J. Electrochem. Soc. 152 (3), (2005), B125-B131.

Google Scholar