XRD and HRTEM Study of Zirconia Nanoparticles Synthesized by Laser Ablation

Article Preview

Abstract:

To investigate doping-free zirconia, pulsed laser ablation technique was applied to synthesize pure zirconia nanoparticles. Various experimental parameters were investigated by means of microscopic, spectroscopic and diffractmetric techniques to reveal morphology and production yield. It is successful to form cubic and monoclinic phases at nanometer-scale fine particles. The cubic phase has relatively small lattice parameters than the stabilized zirconia.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 561-565)

Pages:

591-594

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kamigaki et al, Physics of ceramics (1998) 37-45, 177-187, Uchida Rokakuho (Japanese).

Google Scholar

[2] W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics (1976), John Willey and Sons.

Google Scholar

[3] Institute of Electrical Engineers of Japan, Laser ablation and its applications (1999), Korona-sha (Japanese).

Google Scholar

[4] M. Hashida et al, Proc. SPIE 4423 (1999) 178.

Google Scholar

[5] A. P. Mirgorodsky et al, Phys. Rev. B55 (1997) 19.

Google Scholar

[6] M. Yashima et al, J. Phys. Chem. Solids 57 (1996) 17. 318. 2 P R ×≈ Particle size (nm) Pressure (Pa).

Google Scholar

[2] [4] [6] [8] [10] [12] 0 20 40 60 80 100 O2=200cc/min Ar=600cc/min Figure 4. Total pressure dependence of zirconia particle size synthesized with a laser intensity of 1. 5 W/cm2 at room temperature. 0. 525 keV0. 525 keV0. 525 keV0. 525 keV O K 2. 042 keV2. 042 keV2. 042 keV2. 042 keV Zr Lα 1 8. 040 keV8. 040 keV8. 040 keV8. 040 keV Cu Kα 1, 2 Ar Kα β Figure 5. EDS spectrum of PLD zirconia.

Google Scholar

[7] R.C. Garvis and P.S. Nicholson, J. Am. Ceram. Soc. 55 (1972) 303.

Google Scholar

[8] D.L. Porter and L.E. Alexander, J. Am. Ceram. Soc. 62 (1979) 298.

Google Scholar

[2] 4 2 6 2 8 3 0 3 2 3 4 3 6 PLD-ZrO2.

Google Scholar

[2] 4 2 6 2 8 3 0 3 2 3 4 3 6.

Google Scholar

[2] 4 2 6 2 8 3 0 3 2 3 4 3 6.

Google Scholar

[2] 4 2 6 2 8 3 0 3 2 3 4 3 6 t-ZrO2(5. 6%Y2O3) c-ZrO2(13. 8%Y2O3) m-ZrO2 c((200)) m((200)) m((-111)) c(111) m((111)) 2θ (degree) m(110) m(011) Intensity (a. u. ) Figure 6. XRD spectrum of PLD zirconia, monoclinic ZrO2, tetragonal structure of ZrO2-5. 6mol% Y2O3 and cubic structure of ZrO2-13. 8mol% Y2O3. Figure 7. Oxygen partial pressure dependence of cubic-to-monoclinic ratio, Cc. Deposition condition is under total pressure of 5 Pa with the laser intensity of 1. 5 W/cm2 at room temperature.

DOI: 10.1111/j.1151-2916.2002.tb00536.x

Google Scholar

[10] [20] [30] [40] [50] [60] [70] [20] 40 60 80.

Google Scholar

[10] [20] [30] [40] [50] [60] [70] [20] 40 60 80.

Google Scholar

[10] [20] [30] [40] [50] [60] 700 20 40 60 80 100 Oxygen partial pressure (%) Cc (%).

Google Scholar

[10] [20] [30] [40] [50] [60] [70] [20] 40 60 80.

Google Scholar

[10] [20] [30] [40] [50] [60] [70] [20] 40 60 80.

Google Scholar

[10] [20] [30] [40] [50] [60] 700 20 40 60 80 100 Oxygen partial pressure (%) Cc (%).

Google Scholar