Corrosion Resistance of TiAlN/ZrN and TiCrN/ZrN Multilayers during Heat Treatment

Article Preview

Abstract:

Titanium-based nitride coatings on cutting tools, press molds and dies can prolong their life cycle because of superior corrosion and oxidation resistance of coatings. In this study, TiAlN/ZrN and TiCrN/ZrN multilayer coatings were prepared by R.F magnetron sputtering, and microstructural evolution and corrosion resistance of the coatings were investigated during heat treatment. The TiAlN/ZrN and TiCrN/ZrN multilayer coatings were degraded by heating up to 600 oC with formation of oxides particles on the surface. During the heat treatment, the TiCrN/ZrN and TiAlN/ZrN multilayer coatings showed the lowest corrosion current density and the highest polarization resistance at temperature range of 400 oC and 500 oC. Consequently, the TiAlN/ZrN and TiCrN/ZrN multilayer coatings showed good corrosion resistance at temperature range of 400°C and 500°C during heating.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-88

Citation:

Online since:

January 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Matthews: Surf. Eng. Vol. 1 (1985), p.93.

Google Scholar

[2] H. Jacobs: Surf. Coat. Technol. Vol. 29 (1986), p.221.

Google Scholar

[3] H. C. Barshilia and K. S. Rajam: J. Mater. Res. Vol. 19 (2004), p.3196.

Google Scholar

[4] P. Panjan, B. Navinsek, A. Cvelbar, A. Zalar and I. Milosev: Thin Solid Films Vol. 281-282 (1996), p.298.

Google Scholar

[5] H. C. Barshilia, A Jain and K. S. Rajam: Vacuum Vol. 72-73 (2004), p.241.

Google Scholar

[6] M. Frank, J. P. Celis and J. R. Roos: J. Mater. Res. Vol. 10 (1995), p.119.

Google Scholar

[7] P. H. Mayrhofer, H. Willmann and C. Mitterer: Surf. Coat. Technol. Vol. 146-147 (2001), p.222.

Google Scholar

[8] H. Ichimura and A. Kawana: J. Mater. Res. Vol. 8 (1993), p.1093.

Google Scholar

[9] P. Panjan, B. Navinsek, A. Cvelbar, A. Zalar and J. Vlcek: Surf. Coat. Technol. Vol. 98 (1998), p.1497.

Google Scholar

[10] E. Budke, J. Krempel-Hesse, H. Maidhof and H. Schüssler: Surf. Coat. Technol. Vol. 112 (1999), p.108.

Google Scholar

[11] H. Holleck: J. Vac. Sci. Technol. A, Vac. Surf. Films Vol. 4 (1986), p.2661.

Google Scholar

[12] S. Hotita, M. Kobayashi, H. Akahori and T. Hata: Surf. Coat. Technol. Vol. 66 (1994), p.318.

Google Scholar

[13] U. K. Wiiala, I. M. Penttinen and A. S, Korhonen: Surf. Coat. Technol. Vol. 41 (1990), p.191.

Google Scholar

[14] M. Braic et al.: Surf. Coat. Technol. Vol. 200 (2006), p.6505.

Google Scholar

[15] M. Balaceanu, M. Braic, V. Braic, and G. Pavelescu: Surf. Coat. Technol. Vol. 200 (2005), p.1084.

DOI: 10.1016/j.surfcoat.2005.01.077

Google Scholar

[16] V. K. W. Grips et al.: Thin Solid Films Vol. 3 (2006), p.8.

Google Scholar

[17] D. B. Lee: Surf. Coat. Technol. Vol. 173 (2003), p.81.

Google Scholar