The Microstructural Deformation of the Montmorillonite Particles/Polypropylene/Polylactic Acid Nanocomposite Filaments Infused with Plasma Treated Montmorillonite

Abstract:

Article Preview

The purpose of the present work is to investigate the microstructural deformation of the montmorillonite (MMT) particles/polypropylene (PP)/polylactic acid (PLA) nanocomposite filaments infused with plasma treated MMT. The activation volumes of the MMT/PP/PLA nanocomposite filaments ranging from 31.4572 to 151.2100 (nm)3 estimated by the Eyring’s equation quantitatively revealed that the plasma treated MMT acted as obstacles to dislocation motion during microstructural plastic deformation mechanisms. DSC analysis showed marked increases in glass transition temperature (Tg), indicating the plasma treated MMT could effectively help resist the free crankshaft movement of the macromolecular chain in the nanocomposite filaments. In addition, the MMT/PP/PLA nanocomposite filaments developed intercalated structures which had been examined by SEM.

Info:

Periodical:

Materials Science Forum (Volumes 620-622)

Edited by:

Hyungsun Kim, JienFeng Yang, Tohru Sekino and Soo Wohn Lee

Pages:

469-472

DOI:

10.4028/www.scientific.net/MSF.620-622.469

Citation:

H. Y. Zhu et al., "The Microstructural Deformation of the Montmorillonite Particles/Polypropylene/Polylactic Acid Nanocomposite Filaments Infused with Plasma Treated Montmorillonite", Materials Science Forum, Vols. 620-622, pp. 469-472, 2009

Online since:

April 2009

Export:

Price:

$35.00

In order to see related information, you need to Login.