Samsonov’s Model for Electronic Mechanism of Sintering and its Relevance

Article Preview

Abstract:

In the present review a generalized view of sintering mechanism on the basis of the electronic nature of the chemical species involved has been highlighted. The stable electronic configuration model proposed by G.V.Samsonov is one of the models. In spite of the fact that the model is qualitative, its far reaching impact in explaining liquid phase sintering and activated sintering of real systems can not be minimized. In a way the model holds a premium in its predictive nature , which is so crucial not only in sintering processing, but also in alloy design based on metallic or ceramic systems or composites constituted out of these.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-69

Citation:

Online since:

June 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.V. Samsonov, Ukr. Khim. Zh., vol. 31, 1965, 1233.

Google Scholar

[2] G.V. Samsonov and G.S. Upadhyaya, Planseeberichte fur Pulvermetallurgie, Vol. 20. 1972, 269.

Google Scholar

[3] G.S. Upadhyaya, Metallurgical Transactions, Vol. 3, 1971, 912.

Google Scholar

[4] G.S. Upadhyaya, Scripta Met., Vol 5, No. 12, 1971, 1125.

Google Scholar

[5] G.V. Samsonov, I.F. Prydko, and L.F. Pryadko, A Configurational Model of Matter , Consultant's Bureau, New York, USA, 1973 ( Translated from Russian).

Google Scholar

[6] R.M. German, Liquid Phase Sintering, Plenum Press, New York, (1985).

Google Scholar

[7] G.V. Samsonov and G.S. Upadhyaya, J. Less Common Metals, Vol. 17, 1969, 161.

Google Scholar

[8] G.S. Upadhyaya, Nature and Properties of Refractory Carbides, Nova Science Publishers , Commack, NY, (1996).

Google Scholar

[9] G.S. Upadhyaya, in Synthetic Materials for Electronics, Proceedings of the 2nd International Summer School, Jachranka, Poland, 1979, ed. B. Jakowlev, A. Szymznski and W. Wlosinski, Elsevier Science Publishing Co., Amsterdam, 1981, p.133.

Google Scholar

[10] D.P. Uskokovich ,G.V. Samsonov and M.M. Ristic, Activated Sintering, International Institute for the Science of Sintering, Belgrade, 1974 (in Russian).

Google Scholar

[11] M.S. Koval'chenko and N.M. Sereda, Poroshkovaya Metallurgia, 1968. No. 1, 17. (in Russian).

Google Scholar

[12] E.M. Petrova, in Sbornik Trudov Nuychnoi Konferentsii Asporatov, Institute of Materials Science, Academy of Sciences, Ukraine, Kiev, 1968, p.103. (in Russian).

Google Scholar

[13] G.S. Upadhyaya and P.S. Misra, Science of Sintering, Special Issue, Vol. 10, 1978, 157.

Google Scholar

[14] E.C. Snow, Self Consistent Band Structure of Aluminum by an APW Method- Report , Los Alamos Scientific Laboratory, University of California, USA, (1967).

Google Scholar

[15] Private communication from G.V. Samsonov dated 10th February, (1972).

Google Scholar

[16] J. Luo, Critical Reviews in Solid State and Material Sciences, Vol, 32, 2007, 67.

Google Scholar

[17] I.F. Pryadko, L.F. Pryadko, I.I. Timofeyeva, V.D. Parhomenko, M.D. Smolin and M.M. Ristic, Science of Sintering, Vol. 20, No. 1, 1988, 7.

Google Scholar

[18] C.M. Kipphut and R.M. German, Science of Sintering, Vol. 20, No. 1, 1988, 31.

Google Scholar

[19] V. Srikanth and G.S. Upadhyaya, Trans. Powder Metallurgy Association of India, Vol. 12, 1985, 16.

Google Scholar

[20] V. Srikanth and G.S. Upadhyaya, J. Less Common Metals, Vol. 120, 1986, 213.

Google Scholar

[21] G.S. Upadhyaya and V. Srikanth, in 'Proceedings of the 11th International Plansee Seminar, 2024th May, 1985, Vol. 2, Ed. H. Bildstein and H.M. Ortner, Metallwerk Plansee , Reutte, Austria, 1985, p.203.

DOI: 10.1016/0010-4361(75)90403-6

Google Scholar

[22] G.S. Upadhyaya and V. Srikanth, in 'Modern Developments in Powder Metallurgy, Vol. 15-17, Ed. E.N. Aqua and C.I. Whitman, Metal Powder Industries Federation, Princeton, NJ, USA1985, p.51.

Google Scholar

[23] M. Hamiuddin and G.S. Upadhyaya, Powder Metallurgy, No 3, 1980, 136.

Google Scholar

[24] M. Hamiuddin and G.S. Upadhyaya, Int. J of Powder Metallurgy and Powder Technology, Vol. 16, 1980, 57.

Google Scholar

[25] M. Hamiuddin and G.S. Upadhyaya, Trans. Powder Metallurgy Association of India, Vol. 6, 1979, 57.

Google Scholar

[26] S.P. Jarvis, H. Yamada, S.I. Yamamoto, H. Tokumoto and J.B. Pethica, Nature, Vol. 384, 1996, 247.

Google Scholar

[27] S.K. Bhaumik, G.S. Upadhyaya, and M.L. Vaidya, Materials Science and Technology, Vol. 7, 1991, 723.

Google Scholar

[28] S.K. Bhaumik, G.S. Upadhyaya, and M.L. Vaidya, Ceramics International, Vol. 18, 1992, 327.

Google Scholar

[29] G.V. Samsonov and V.I. Yakovlev, Z. Metallkunde, Vol. 62, 1971, 621.

Google Scholar

[30] G.V. Samsonov and V.I. Yakovlev, Science of Sintering, Vol. 9, 1970, 231.

Google Scholar

[31] G.V. Samsonov and V.I. Yakovlev, Soviet Powder Metallurgy and Metal Ceramics, Vol. 9, 1970, 30.

Google Scholar

[32] S. Proczazka, in Ceramics for High Performance Applications, Ed. J.J. Burke et al., Brook Hill, Chestnut Hill, 1974, p.329.

Google Scholar

[33] K.A. Schwetz and A. Lipp, in Science of Ceramics, Vol. 10, 1980, 149.

Google Scholar

[34] H. Hausner, in Energy and Ceramics, Ed. P. Vincenzini, Elsevier, Amsterdam, 1980, p.582.

Google Scholar

[35] R. Hamminger, G. Grathwohl and F. Thummler, in Science of Ceramics, Vol. 12, Ed. P. Vincenzini, Ceramurgia s. r. l., Faenza, Italy, 1984, p.299.

Google Scholar

[36] K. Biswas, Solid State Sintering of SiC Ceramics, present issue of Materials Science Forum.

Google Scholar

[37] K. Biswas, Liquid Phase Sintering of SiC Ceramics , present issue of Materials Science Forum.

Google Scholar

[38] Y. Liu and M.L. Cohen , Science, Vol. 245, 1989, (1989).

Google Scholar

[39] S.F. Matar, Hard Materials: Experiment and Modeling Issues, http: /topics. scirus. com/Hard_Materials, last updated 06th August, (2008).

Google Scholar

[40] S.N. Poschernenko and V.N. Antsiferov , Science of Sintering, Vol. 32, Special Issue, 2000, 33.

Google Scholar

[41] D. Vollath, Nanomaterials, Wiley-VCH, Weinheim, Germany, (2008).

Google Scholar

[42] G.V. Samsonov and G.S. Upadhyaya , in 'Proceedings of the 2nd International Conference on the Strength of Metals and Alloys, Asilomar, California, American Society for Metals, Materials Park, Ohio, Vol1, 1970, 373.

Google Scholar

[43] A. Seeger, International J of Materials Research, Vol. 100, No1, 2009, 24.

Google Scholar

[44] G.V. Samsonov, Ceramurgia, Vol. 2, No. 2, 1972, 91.

Google Scholar

[45] S. Schumacher, R. Birringer, R. Strauss and H. Gleiter, Acta Metall., Vol. 17, 1989, 2485.

Google Scholar

[46] E.D. Obraztsowa, in Nanophase Materials , Ed.G.C. Hadjipanayis and R.W. Siegel (eds. ), NATO Adv. Study Institute Series E260, 1993, p.483.

Google Scholar

[47] F.N. Rhines and R.T. DeHoff, Final report International Copper Research Association Project No 280 , Surface Tension of Solid Copper in Sintering Atmospheres, August, (1981).

Google Scholar

[48] W. Schatt, R. Rolle, A. Sibilla and E. Friedrich, Science of Sintering, Vol. 18, No. 1, 1986, 3.

Google Scholar

[49] R.J. Hemley and N.W. Ashcroft, Physics Today, August, 1998, 26.

Google Scholar

[50] N.V. Chandrashekar et al., in Solid Phase Transformations II, Ed.J. Cermak and I. Stloukal, Trans Tech Publications, Stafa-Zurich, 2009, p.123.

Google Scholar

[51] H. Holleck, H. Keiste and W. Schneider, in High Tech Ceramics, . ed. P. Vincenzini, Elsevier Science Publishers, B.V., Amsterdam, 1987, p.2609.

Google Scholar

[52] B. Palanivel, G. Kalpana and M. Rajagopalan, in Alloy Modeling and Design, Ed. G.M. Stocks and P.E.A. Turchi, TMS, Warrendale, PA, 1994, p.91.

Google Scholar

[53] G.V. Samsonov, V.K. Vitryanuk and F.I. Chapligin, Tungsten Carbides, Naukova Dumka, Kiev, p.60 ( in Russian).

Google Scholar

[54] G.S. Upadhyaya (ed. ), Sintered Metal-Ceramic Composites, Elsevier, Amsterdam, 1984, p.49.

Google Scholar