Mechanical Properties of Nanocrystalline Cu and Cu-Zn Using Tensile and Shear Punch Tests

Article Preview

Abstract:

Shear punch test (SPT) has been used to study the mechanical properties of Cu, Cu–10 wt.% Zn, Cu–20 wt.% Zn and Cu–30 wt.% Zn after ball milling with an average grain size in the range of 33-12nm. The strain rate sensitivity (SRS) and physical activation volume have been determined. The magnitude observed for these characteristic deformation parameters is very different from their course-grained (cg) counterpart. This suggests that the thermally activated process in nanocrystalline (nc) metal/alloys is different from the conventional forest dislocation cutting mechanism. The stacking fault energy (SFE) of Cu-Zn alloys decreased with the adding of Zn, and deformation twins are anticipated to introduce into the nc Cu-Zn alloys during process of ball milling. Dislocations could accumulate along the TBs and carry the plastic strain, so the ductility of nc Cu-Zn alloys could be improved.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 633-634)

Pages:

373-382

Citation:

Online since:

November 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Zhang, H. Wang, J. Narayan and C.C. Koch: Acta Mater. Vol. 49 (2001), p.1319.

Google Scholar

[2] X. Zhang, H. Wang, R.O. Scattergood, J. Narayan, X. Zhang, H. Wang, M. Kassem, J. Narayan and C.C. Koch: Scripta Materialia Vol. 46 (2002), p.661.

DOI: 10.1016/s1359-6462(02)00048-9

Google Scholar

[3] X.K. Zhu, X. Zhang, H. Wang, A.V. Sergueeva, A.K. Mukherjeec, R.O. Scattergood, J. Narayan and C.C. Koch: Scripta Materialia Vol. 49 (2003), p.429.

DOI: 10.1016/s1359-6462(03)00297-5

Google Scholar

[4] K.M. Youssef, R.O. Scattergood, K.L. Murty, J.A. Horton and C.C. Koch: Appl. Phys. Lett. Vol. 87(2005), 091904.

DOI: 10.1063/1.2034122

Google Scholar

[5] S. Cheng, E. Ma, Y.M. Wang, L.J. Kecskes, K.M. Youssef, C.C. Koch, U.P. Trociewitz and K. Han: Acta Mater. Vol. 53 (2005), p.1521.

DOI: 10.1016/j.actamat.2004.12.005

Google Scholar

[6] H. Conrad: Mater. Sci. Eng. A Vol. 341 (2003), p.216.

Google Scholar

[7] Y.M. Wang and E. Ma: Acta Mater. Vol. 52 (2004), p.1699.

Google Scholar

[8] E. Q. Hall: Proc. Soc. London Vol. B64 (1951), p.747.

Google Scholar

[9] N. J. Petch: J. Iron Steel Inst. Vol. 174 (1953), p.25.

Google Scholar

[10] K.S. Kumar, H. Van Swygenhoven and S. Suresh: Acta Mater. Vol. 51 (2003), p.5743.

Google Scholar

[11] H. Van Swygenhoven and A. Caro: Appl. Phys. Lett. Vol. 71(1997), p.1652.

Google Scholar

[12] M.A. Meyers, A. Mishra and D.J. Benson: Prog. Mater. Sci. Vol. 51 (2006), p.427.

Google Scholar

[13] R.K. Guduru, K.A. Darling, R. Kishore, R.O. Scattergood, C.C. Koch and K.L. Murty: Mater. Sci. Eng. A. Vol. 395 (2005), p.307.

Google Scholar

[14] R.K. Guduru, K.A. Darling, R.O. Scattergood, C.C. Koch and K.L. Murty: J. Mater. Sci. Vol. 42 (2007), p.5581.

Google Scholar

[15] C.C. Koch, D.G. Morris, K. Lu: Inoue A. MRS Bull Vol. 24 (1999), p.54.

Google Scholar

[16] J.W. Christian, S. Mahajan: Prog. Mater. Sci. Vol. 39 (1995), p.157.

Google Scholar

[17] L . Lu, R. Schwaiger, Z.W. Shan, M. Dao, K. Lu, S. Suresh: Acta Mater. Vol. 53 (2005), pp.2169-79.

Google Scholar

[18] L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, K. Luf: Science Vol. 304 (2004), p.422.

Google Scholar

[19] R.J. Asaro, S. Suresh: Acta Mater. Vol. 53 (2005), p.3369.

Google Scholar

[20] Y.F. Shen, L. Lu, M. Dao, S. Suresh: Scripta Mater. Vol. 55 (2006), p.319.

Google Scholar

[21] Y.H. Zhao, Z. Horita , T.G. Langdon , Y.T. Zhu: Mater. Sci. Eng. A. Vol. 474 (2008), p.342.

Google Scholar

[22] Y.H. Zhao, X.Z. Liao, Y.T. Zhu, Z. Horita, T.G. Langdon: Mater. Sci. Eng. A. Vol. 410 (2005) , p.188.

Google Scholar

[23] D. Caillard, J.L. Martin, Thermally Activated Mech. in Crystal Plasticity, Pergamon Materials Series: 8, Elsevier Ltd, 1 st edition, (2003).

DOI: 10.1016/s1470-1804(03)80029-9

Google Scholar

[24] G. L. Hankin, M. B. Toloczko, M. L. Hamilton, F. A. Garner, R. G. Faulkner: J. Nucl. Mater. Vol. 1657 (1998), p.258.

Google Scholar

[25] R. Nomoto, T. E. Carrick, J. F. McCabe: Dental Mater. Vol. 17 (2001), p.415.

Google Scholar

[26] F. A. Mohamed, H. Li, Mater. Sci. Eng. A. Vol. 298 (2001), p.1.

Google Scholar

[27] Q. Wei, S. Cheng, K. T. Ramesh, E. Ma, Mater. Sci. Eng. A. Vol. 381 (2004), p.71.

Google Scholar

[28] Y. M. Wang, A. V. Hamza, E. Ma: Appl. Phys. Lett. Vol. 86 (2005), 241917.

Google Scholar

[29] Y.T. Zhu, J.Y. Huang, J. Gubicza, T. Ungar, Y.M. Wang, E. Ma: J Mater Res. Vol. 18 (2003), p. (1908).

Google Scholar

[30] Y. M. Wang, A. V. Hamza, E. Ma: Acta Mater. Vol. 54 (2006), p.2715.

Google Scholar

[31] R. Schwaiger, B. Moser, M. Dao, M.F. Chisholm, J.A. Horton, P. Wang: Acta Mater. Vol. 51 (2003), p.5159.

Google Scholar

[32] Z.W. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, D.M. Follstaedt, S.X. Mao: Science Vol. 305 (2004), p.654.

Google Scholar

[33] E. Ma: Science Vol. 305 (2004), p.623.

Google Scholar

[34] L. , R. Schwaiger, Z.W. Shan, M. Dao, K. Lu, S. Suresh: Acta Mater. Vol. 53 (2005), p.2169.

Google Scholar

[35] Y.M. Wang, E. Ma: Appl Phys Lett. Vol. 83 (2003), p.3165.

Google Scholar

[36] J. Chen, L. Lu, K. Lu: Scripta Mater. Vol. 54 (2006), p. (1913).

Google Scholar

[37] M. Dao, L. Lu, Y. F. Shen, S. Suresh: Acta Mater. Vol. 54 (2006), p.5421.

Google Scholar