The Effect of Grain Size and Strain Rate on the Tensile Ductility of Bulk Nanostructured Metals and Alloys

Article Preview

Abstract:

The nanostructured metals and alloys are under intensive research worldwide and being developed into bulk forms for application. While these new materials offer record-high strength, their ductility is often inadequate and sometime rendering them unusable. Besides tailoring the nanostructure to achieve coexisting high strength and high ductility, to uncover the coherent property of this material is also important. This article reviews the recent researches finished in our lab. A set of nanostructured metals and alloys were synthesized by a direct current electrodeposition technique, and the effect of grain size and strain rate on the mechanical properties stressing on tensile ductility was systemically studied by tensile test at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 633-634)

Pages:

393-410

Citation:

Online since:

November 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.A. Meyers, A. Mishra, and D.J. Benson: Prog. Mater. Sci. Vol. 51 (2006) p.427.

Google Scholar

[2] S. Cheng, J.A. Spenser, and W.W. Milligan: Acta Mater. Vol. 51 (2003) p.4505.

Google Scholar

[3] S. Cheng, E. Ma, Y.M. Wang, L.J. Kecskes, K.M. Youssef, C.C. Koch, U.P. Trociewitz, and K. han: Acta Mater. Vol. 53 (2005) p.1521.

DOI: 10.1016/j.actamat.2004.12.005

Google Scholar

[4] C.D. Gu, J.S. Lian, Q. Jiang, and Z.H. Jiang: Mater. Sci. Eng. A Vol. 459 (2007) p.75.

Google Scholar

[5] G.Y. Wang, Z.H. Jiang, H.Z. Zhang, and J.S. Lian: J. Mater. Res. Vol. 23 (2008) p.2238.

Google Scholar

[6] C.C. Koch: Scripta Mater. Vol. 49 (2003), p.657.

Google Scholar

[7] E. Ma: Scripta Mater. Vol. 49 (2003), p.663.

Google Scholar

[8] E. Ma: Powder Metallurgy 43 (2000) p.306.

Google Scholar

[9] L. He, and E. Ma: J. Mater. Res. Vol. 11 (1996), p.72.

Google Scholar

[10] E. Ma: JOM Vol. 58 (2006), p.49.

Google Scholar

[11] Y.M. Wang, and E. Ma: Acta Mater. Vol. 52 (2004), p.1699.

Google Scholar

[12] X.X. Shen, J.S. Lian, Z.H. Jiang, and Q. Jing: Adv. Eng. Mater. Vol. 10 (2008), p.539.

Google Scholar

[13] Y.M. Wang, M.W. Chen, F.H. Zhou, and E. Ma: Nature Vol. 419 (2002), p.912.

Google Scholar

[14] C.D. Gu, J.S. Lian, Q. Jiang, and W.T. Zheng: J. Phys. D: Appl. Phys. Vol. 40 (2008), p.7440.

Google Scholar

[15] E. Bitzek, C. brandl, P.M. Derlet, and H. Van Swygenhoven: Phys. Rev. Lett. Vol. 100 (2008), p.235501.

Google Scholar

[16] K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, and P. Wang: Acta Mater. Vol. 51 (2003), p.387.

Google Scholar

[17] H. Van Swygenhoven, P.M. Derlet, and A.G. Froseth: Acta Mater. Vol. 54 (2006), p. (1970).

Google Scholar

[18] J. Schiøta, and K.W. Jacohen: Science Vol. 301 (2003), p.1357.

Google Scholar

[19] J. Schiøta, F.D. Tolla, and K.W. Jacohen: Nature Vol. 391 (1998), p.561.

Google Scholar

[20] J.R. Trelewicz, and C. A. Schuh: Acta Mater. Vol. 55 (2007), p.5948.

Google Scholar

[21] J.R. Trelewicz, and C. A. Schuh: Appl. Phys. Lett. Vol. 93 (2008), p.171916.

Google Scholar

[22] J.S. Lian, C.D. Gu, Q. Jiang, and Z.H. Jiang: J. Appl. Phys. Vol. 99 (2006), p.076103.

Google Scholar

[23] H.Z. Zhang, Z.H. Jiang, J.S. Lian, and Q. Jiang: Mater. Sci. Eng. A Vol. 479 (2007), p.136.

Google Scholar

[24] Y.M. Wang, and E. Ma: Appl. Phys. Lett. Vol. 83 (2003), p.3165.

Google Scholar

[25] H.Z. Zhang, Z.H. Jiang, J.S. Lian, and Q. Jiang: Adv. Eng. Mater. Vol. 10 (2008), p.41.

Google Scholar

[26] G.Y. Wang, Z.H. Jiang, Q. Jiang, and J.S. Lian: J. Appl. Phys. Vol. 104 (2008), p.084305.

Google Scholar

[27] R.J. Asaro, and S. Suresh: Acta Mater. Vol. 53 (2005), p.3369.

Google Scholar

[28] R.L. Coble: J Appl. Phys. Vol. 34 (1963), p.1679.

Google Scholar

[29] X.X. Shen, J.S. Lian, Z.H. Jiang, and Q. Jiang: Mater. Sci. Eng. A Vol. 487 (2007), p.410.

Google Scholar

[30] G.Y. Wang, Z.H. Jiang, H.Z. Zhang, and J.S. Lian: J. Mater. Res. Vol. 23 (2008), p.2238.

Google Scholar

[31] E.W. Hart: Acta Metall. Vol. 15 (1967), p.351.

Google Scholar

[32] J.S. Lian, and B. Baudelet: Mater. Sci. Eng. Vol. 84 (1986), p.157.

Google Scholar

[33] A.K. Ghosh, and R.A. Ayres: Metall. Trans. A Vol. 7 (1976), p.1589.

Google Scholar

[34] I. A. Ovid'ko: J. Mater. Sci. Vol. 42 (2007), p.1694.

Google Scholar

[35] C.D. Gu, J.S. Lian, Q. Jiang, and Z.H. Jiang: Mater. Sci. Eng. A Vol. 459 (2007), p.75.

Google Scholar

[36] H. Li, and F. Ebrahimi: Adv. Mater. Vol. 17 (2005), p. (1969).

Google Scholar

[37] Z.H. Jiang, X.L. Liu, G.Y. Li, Q. Jiang, and J.S. Lian: Appl. Phys. Lett. Vol. 88 (2006), p.143115.

Google Scholar

[38] D. Wolf, V. Yamakov, S.R. Phillpot, A.K. Mukherjee, and H. Glerter: Acta Mater. Vol. 53 (2005), p.1.

Google Scholar

[39] D. Wolf, S.R. Phillpot, and H. Glerter: Acta Mater. Vol. 50 (2002), p.61.

Google Scholar

[40] A.J. Haslam, V. Yamakov, D. Moldovan, D. Wolf, S. R Phillpot, and H. Gleiter: Acta Mater. Vol. 52 (2004), p. (1971).

DOI: 10.1016/j.actamat.2003.12.048

Google Scholar