Strength and Ductility of Nanostructured Composites with Co-Deformable Components

Article Preview

Abstract:

This paper reviews research on nanostructured high strength wires and strips. Such materials have sufficient ductility and they have found application in a variety of areas. The high strength of the materials is achieved by refinement of the spacing between the strengthening fibers. Due to the refined microstructure, the materials have very large interphase interface areas. Such interfaces provide very effective barriers for dislocation motions. In spite of their microstructural refinement, the materials still have sufficient ductility that gives them engineering values.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 633-634)

Pages:

383-392

Citation:

Online since:

November 2009

Authors:

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Ochian, S. Nishida, H. Ohba, and A. Kawana, Wire Journal International, 1993, vol. 26, p.50.

Google Scholar

[2] I. Ochian, S. Nishida, H. Ohba, and A. Kawana, Tetsu to Hagane-J. Iron Steel Institute Japan, 1993, vol. 79, pp.1101-1107.

DOI: 10.2355/tetsutohagane1955.79.9_1101

Google Scholar

[3] M. Zelin, Acta Materialia 50 (2002) 4431-4447.

Google Scholar

[4] F.B. Pickering and B. Garbarz, Scripta. Metallurgica, 21, 249-253, (1987).

Google Scholar

[5] HYZAK , METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 7, 8, 1217-1224, (1976).

Google Scholar

[6] E.O. Hall, Proc. Phys. Soc., Ser. B, Vol. 64, pp.747-753, (1951).

Google Scholar

[7] N.J. Petch, J. Iron and Steel Institute, pp.25-28, May (1953).

Google Scholar

[8] MARDER AR, METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE 7 : 365 (1976).

Google Scholar

[9] DOLLAR M, ACTA METALLURGICA 36 : 311 (1988).

Google Scholar

[10] RAY KK, ACTA METALLURGICA ET MATERIALIA 39 : 2201 1991 11 FRANKLIN JR, WIRE IND : 958 (1980).

Google Scholar

[12] RIDLEY N, METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE Volume: 15 Issue: 6 Pages: 1019-1036, (1984).

Google Scholar

[13] Porter D.A. EASTERLING KE, SMITH GDW, ACTA METALLURGICA Volume: 26 Issue: 9 Pages: 1405-1422 Published: (1978).

Google Scholar

[14] ATASOY OE, OZBILEN S, JOURNAL OF MATERIALS SCIENCE Volume: 24 Issue: 1 Pages: 281-287, (1989).

Google Scholar

[15] N. Yamakoshi, Y. Nakamura and T. Kaneda, Wire Journal, 10, 36, (1972).

Google Scholar

[16] G.K. Bouse, I.M. Bernstein and D.H. Stone, in Rail Steels-Developments, Processing, and Use, ASTM STP 644, p.145, (1978).

Google Scholar

[17] K. Nakase and I.M. Bernstein, Metallurgical Transactions, 19A, 2819, (1988) 18 L.E. Miller and G.C. Smith, Journal of Iron and Steels Institute, 998, (1970).

Google Scholar

[19] B.R. Butcher and H.R. Pettit, Journal of the Iron and Steel Institute, 469, (1966).

Google Scholar

[20] R. Lyrberg and T. Nilsson, Wire Industry, (1982).

Google Scholar

[21] G. Krauss, in Principle of Heat Treatment, American Society for Metals, 118-121, (1980).

Google Scholar

[22] T. Gladman, I.D. McIvor, and F.B. Pickering, Journal of Iron steel Institute, 916 (1972).

Google Scholar

[23] N.K. Kennon and N.A. Kaye, Metallurgical Transactions, 13A, 975, (1982).

Google Scholar

[24] D. Payne and B.F. Smith, Institute of Iron and Steel Manufacturers, Tech Conf. Harrogate, Paper1.

Google Scholar

[25] B. Garbarz and F.B. Pickering, Materials Science and Technology, 4, 967, (1988).

Google Scholar

[26] M. Carsi, F. Penalba, O.A. Ruano, O.D. Sherby, Metall. Mater. Trans, 1997, vol. 28, pp.1913-20.

Google Scholar

[27] K.T. Park, S. K Cho, J.K. Choi, Scripta Mater., 1997, vol. 37, pp.661-6.

Google Scholar

[28] K. Han, G.D.W. Smith and D.V. Edmonds, Mater. Sci. Eng., 1995, vol. A190, pp.207-214.

Google Scholar

[29] K. Han, G.D.W. Smith and D.V. Edmonds, Metall. Mater. Trans., 1995, vol. 26, pp.1617-31.

Google Scholar

[30] E.R. Morgan and J.C. Shyne, Trans. AIME, 1957, vol. 209, pp.65-69.

Google Scholar

[31] A. Karimi Taheri, T.M. Maccagno and J.J. Jonas, Metall. Trans., 1995, vol. 26A, pp.1183-93.

Google Scholar

[32] J. Languillaume, G. Kapelski and B. Baudelet, Acta Mater, 1997, vol. 45, pp.1201-12.

Google Scholar

[33] J.T. Wood and J.D. Embury, and M. Ashby, Acta Mater. , 45(3), 1997, 1099.

Google Scholar

[34] Embury, J.D. and Han, K., Current Opinions in Solid State and Materials Science, 1998, 11(3), 304.

Google Scholar

[35] Van Cleemput M., Jones H., Van der Burgt M., J-R. Barrau, Lee J.A., Eyssa Y., and Schneider-Muntau, H. -J. , Physica B, 1996, 216, 226.

DOI: 10.1016/0921-4526(95)00478-5

Google Scholar

[36] Pernambuso-Wise, P., Proceeding of Conference of High Magnetic Fields, Applications, Generation, Materials, ed. Schneider-Muntau, H. -J., World Scientific, NJ, USA, 1997, 371.

Google Scholar

[37] Frings P.H., Vanbockstal L., Physica B, 1995, 211(1-4), 73.

Google Scholar

[38] Misra A, Kung H, Hirth JP, Hoagland RG, and Embury, Dislocation models for strengthening in nanostructured metallic multilayers, Conference Symposium B: Structure and Mechanical Properties-Theory and Computer Simulations vs. Experiment as held at the 2000 MRS Fall Meeting, Boston, MA, USA, 28-30 Nov. (2000).

DOI: 10.1557/proc-634-b4.2.1

Google Scholar

[39] Misra A, Kung H, Advanced Engineering Materials, 2001, 3, 217.

Google Scholar

[40] Frommeyer, G. and Wassermann, G., Acta Metall, 1975, 23, 1353.

Google Scholar

[41] Han K., Embury J.D., Sims J.R., Campbell L.J., Schneider-Muntau H. -J., Pantsyrnyi V. I., Shikov A., Nikulin A. and Vorobieva A., Materials Science and Engineering, 1999, A267, 99.

DOI: 10.1016/s0921-5093(99)00025-8

Google Scholar

[42] Mecking H., Texture in Metals, Preferred Orientation in deformed Metals and Rocks: An introduction to Modern Texture Analysis, Hamburg, Germany, (1985).

Google Scholar

[43] Knorr DB and Weiland H, JOM, 1994, 46, 32.

Google Scholar