Processing Age-Hardenable Alloys by Equal-Channel Angular Pressing at Room Temperature: Strategies and Advantages

Article Preview

Abstract:

The effect of the combination of natural aging and severe plastic deformation (SPD) produced by Equal-Channel Angular Pressing (ECAP) on the microstructure, the strength, as well as the ductility of age-hardenable AlZnMg alloys was investigated. A strategy is proposed for the processing of these “difficult-to-work” alloys at room temperature. Several advantages such as strengthening, precipitation-accelerating and ductility-improving effects of ECAP at room temperature are also shown and discussed in this work.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 633-634)

Pages:

527-534

Citation:

Online since:

November 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. F. Mondolfo, Int. Metall. Rev. 153 (1971) 95.

Google Scholar

[2] I. J. Polmear, Light Alloys, Butterworth-Heinemann, 3rd edn., London (1995).

Google Scholar

[3] H. Löffler, I. Kovács and J. Lendvai, J. Mater. Sci. 18 (1983) 2215.

Google Scholar

[4] J. Lendvai, Mater. Sci. Forum 217-222 (1996) 43.

Google Scholar

[5] G. Sha, A. Cerezo, Acta Mater. 52 (2004) 4503. Figure 7: Stress-elongation curves obtained by tensile testing of the samples shown in Fig. 6.

Google Scholar

[6] N. Q. Chinh, J. Lendvai, D. H. Ping, K. Hono, J. Alloys Comp. 378 (2004) 52.

Google Scholar

[7] A. H. Cottrell, Phil. Mag. 44 (1953) 829.

Google Scholar

[8] A. Van den Beukel, Phys. Stat. Sol. (a) 30 (1975) 197.

Google Scholar

[9] L. P. Kubin and Y. Estrin, Acta Metall. 38 (1990) 697.

Google Scholar

[10] P. Hähner, Mater. Sci. Eng. A 207 (1996) 208.

Google Scholar

[11] D. Wang and Z.Y. Ma, J. All. Comp., in press (2008).

Google Scholar

[12] C. Xu, M. Furukawa, Z. Horita, T. G. Langdon, Acta Mater. 51 (2003) 6139.

Google Scholar

[13] Y. H. Zhao, X. Z. Liao, Z. Jin, R. Z. Valiev, Y. T. Zhu, Acta Mater. 52 (2004) 4589.

Google Scholar

[14] C. Xu, M. Furukawa, Z. Horita, T. G. Langdon, Acta Mater. 53 (2005) 749.

Google Scholar

[15] J. Gubicza, I. Schiller, N. Q. Chinh, J. Illy, Z. Horita, T. G. Langdon, Mater. Sci. Eng A 460461 (2007) 77.

Google Scholar

[16] M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, Mater. Sci. Eng. A 257 (1998) 328.

Google Scholar

[17] L. Balogh, G. Ribárik, T. Ungár, J. Appl. Phys. 100 (2006) 023512.

Google Scholar

[18] K. Venkateswarlu, M. Ghosh, A.K. Ray, C. Xu, T.G. Langdon, Mater. Sci. Eng. A 485 (2008) 476.

Google Scholar

[19] N. Q. Chinh, J. Gubicza, T. Czeppe, J. Lendvai, Z. Hegedűs, C. Xu and T. G. Langdon, Mater. Sci. Forum 584-586 (2008) 501.

DOI: 10.4028/www.scientific.net/msf.584-586.501

Google Scholar

[20] Z. Horita, M. Furukawa, M. Nemoto, A. J. Barnes and T. G. Langdon, Acta Mater. 48 (2000) 3633.

Google Scholar

[21] Y. Huang, T.G. Langdon, J. Mater. Sci. 37 (2002) 4993.

Google Scholar

[22] Y. Huang, T.G. Langdon, Mater. Sci. Eng. A 358 (2003) 114.

Google Scholar

[23] N. Q. Chinh, P. Szommer, Z. Horita, T. G. Langdon, Adv. Mater. 18 (2006) 34.

Google Scholar

[24] R. Z: Valiev and T. G. Langdon, Prog. Mater. Sci. 51 (2006) 881.

Google Scholar

[25] N.Q. Chinh, J. Gubicza, T.G. Langdon, J. Mater. Sci. 42 (2007) 1594.

Google Scholar