Laser Hardening of XC42 Steel: Numerical Analysis of Quenched Area

Article Preview

Abstract:

In contrast with conventional tools, laser processing allows hardening of a restricted zone while keeping the structural properties of the steel bulk. This last quality indicates that, in order to verify a laser hardening, only some specific information of the quenched area is required. The aim of this article is to analyse the reliability of finite element numerical simulation by comparing numerical and experimental outcomes. To do that, we define some magnitudes: the maximum width, the real depth of the laser penetration, the maximum hardness and the hardness versus depth profiles (Jominy’s curves). The tests show the good behaviour of the model and how this contributes important information to the choice of the laser parameters.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 636-637)

Pages:

1165-1171

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Patwa, Y.C. Shin. Predictive modeling of laser hardening of AISI5150H steels. Int. J. of Machine Tools & Manufacture. Vol. 47, No. 2 (2007), pp.307-320.

DOI: 10.1016/j.ijmachtools.2006.03.016

Google Scholar

[2] R.S. Lakhkar, Y.C. Shin, M.J.M. Krane. Predictive modeling of multi-track laser hardening of AISI4140 steel. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing. Vol. 480, No. 1-2 (2008), pp.209-217.

DOI: 10.1016/j.msea.2007.07.054

Google Scholar

[3] G. Tani, L. Orazi, A. Fortunato. Prediction of hypo eutectoid steel softening due to tempering phenomena in laser surface hardening. CIRP Annals-Manufacturing Technology. Vol. 57, No. 1 (2008), pp.209-212.

DOI: 10.1016/j.cirp.2008.03.057

Google Scholar

[4] E.A. Brandes, G.B. Brooks. Smithells metals reference book, 7 th edition, ButterworthHeinemann, Oxford (1992).

Google Scholar

[5] E. Saavedra, A. Ramil, J.C. Álvarez, J.M. Amado, A.J. López, J. Sanesteban, M.J. Tobar, A.J. Yáñez. Laser hardening simulation with finite element method: an analysis of the errors introduced by the discretization. Proceedings of the 4th European Congress on Computational Methods in Applied Sciences and Engineering, Jyväskylä (2004).

Google Scholar

[6] Max-Planck Institut für Einsenforschung. Atlas zur wärmebahandlung der stähle, Band 1-3. Verlag, Stahleisen M.B.H., Düsseldorf (1961).

Google Scholar

[7] M. Melander, J. Nicolov. Heating and cooling transformation diagrams for the rapid heat treatment of two alloy steels. J. Heat Treating, Vol. 4, No. 1, (1985), pp.32-38.

DOI: 10.1007/bf02835487

Google Scholar

[8] S. Denis, D. Farias, A. Simon. Mathematical model coupling phase transformation and temperature evolutions in steels. ISIJJ International, Vol. 32 (1992), No. 3, pp.316-325.

DOI: 10.2355/isijinternational.32.316

Google Scholar

[9] J. Xie, A. Kar, J.A. Rothenflue, W.P. Latham, Temperature-dependent absorptivity and cutting capability of CO2, Nd: YAG and chemical oxygen-iodine lasers, Journal of Laser Applications Vol. 9 (1997), pp.77-85.

DOI: 10.2351/1.4745447

Google Scholar