Development of Permeable Reactive Barrier for Phosphorus Removal

Article Preview

Abstract:

Permeable reactive barriers were developed for phosphorus removal. The barrier consists in an organic-inorganic hybrid material, which allows water and others species to flow through it, while selectively removes the contaminants. Polyethylene oxide (POE) and aluminium oxide (Al2O3) were used as the organic and the inorganic parts, respectively. The hybrid material was obtained by sol-gel reaction, using aluminium isopropoxide as inorganic percursor in order to attain Al2O3. The hybrid material produced was characterized by FT-IR spectroscopy and thermogravimetry. The previous tests for phosphorus removal have shown the effectiveness capacity of the developed material to remove it.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 636-637)

Pages:

1365-1370

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Martins, D. Ribeiro, D. Pacheco, J.V. Cruz, R. Cunha, V. Gonçalves, R. Nogueira, A.G. Brito: Appl. Geochem. Vol. 23 (2008), p.2171.

Google Scholar

[2] R.M. Unnithan, V.P. Vinod, T.S. Anirudhan: J. Appl. Poly. Sci. Vol. 84 (2002), p.2553.

Google Scholar

[3] D. Ribeiro, G. Martins, R. Nogueira, J.V. Cruz, A.G. Brito: Chemosphere Vol. 70 (2008), p.1256.

Google Scholar

[4] D.R. Kioussis, F.W. Wheaton, P. Kofinas: Aquaculture Eng. Vol. 19 (1999), p.163.

Google Scholar

[5] T. Hano, H. Takanashi, M. Hirata, K. Urano, S. Eto: Water Sci. Technol. Vol. 35 (1997), p.39.

Google Scholar

[6] D. Donnert, M. Salecker: Water Sci. Technol. Vol. 40 (1999), p.195.

Google Scholar

[7] E.W. Shin, J.S. Han: Environ. Sci. Technol. Vol. 38 (2004), p.912.

Google Scholar

[8] L.J. Thibodeaux, V.J. Bierman: Environ. Sci. Technol. Vol. 37 (2003), p. 252A.

Google Scholar

[9] V. Bounor-Legaré, C. Angelloz, P. Blanc, P. Cassagnau, A. Michel: Polymer Vol. 45 (2004), p.1485.

DOI: 10.1016/j.polymer.2003.12.027

Google Scholar

[10] T. Saegusa: Pure & Appl. Chem. Vol. 67 (1995), p. (1965).

Google Scholar

[11] M.K. Harrup, M.G. Jones, L. Polson, B. White: J. Sol-Gel Sci. Technol Vol. 47 (2008), p.243.

Google Scholar

[12] A.D. Eaton, L.S. Clesceri, A.E. Greenberg, in: Standard Methods for the Examination of Water and Wastewater 19 th Edition, edited by A. D. Eaton, L. S. Clesceri, A. E. Greenber, chapter, 4 (1995).

Google Scholar

[13] A.G. Stack, S.R. Higgins, C.M. Eggleston: Geochimica et Cosmochimica Acta Vol. 65 (2001), p.3055.

Google Scholar

[14] K. Sakadevan, H.J. Bavor: Wat. Res. Vol. 32 (1998), p.393.

Google Scholar

[15] A.R. Chowdhuri, C.G. Takoudis: Thin Solid Films Vol. 446 (2004), p.155.

Google Scholar

[16] A. Ortiz, J.C. Alonso, V. Pankov, A. Huanosta, E. Andrade: Thin Solid Films Vol. 368 (2000), p.74.

DOI: 10.1016/s0040-6090(00)00864-6

Google Scholar

[17] S.J. Wen, T.J. Richardson, D.I. Ghantous, K.A. Striebel, P.N. Ross, E.J. Carnis: J. of Electroanalytical Chem. Vol. 408 (1996), p.113.

Google Scholar