Photocatalytic Decolourisation of Orange II Aqueous Solutions by TiO2 and ZnO Active Layers Screen Printed on Ceramic Tiles

Article Preview

Abstract:

In this work TiO2 and ZnO layers have been deposited by screen-printing in common glazed ceramic tiles. These layers were evaluated for the photocatalytic degradation of Orange II in aqueous solutions, in a batch photoreactor under visible light. The photocatalytic behaviour was assessed by taking into account experimental variables which include: (i) firing temperature of the TiO2 printed layer; (ii) layer thickness; (iii) operation time; (iv) pH; and (v) dye concentration. Optimal processed layers showed an interesting decolourisation performance (over 90% efficiency after 7-8 h). It is anticipated that these new ceramic materials might be developed as an interesting alternative to TiO2 or ZnO suspensions, for example in photocatalytic applications excusing the particles removal at the end of the process.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 636-637)

Pages:

1377-1382

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.C. Souza Cordeiro, S.G.F. Leite and M. Dezotti: Quim. Nova Vol. 27 (2004) p.689.

Google Scholar

[2] M.R. Hoffmann, S.T. Martim, W. Choi and D.W. Bahemann: Chem. Rev. Vol. 95 (1995) p.69.

Google Scholar

[3] D. Chatterjee and S. Dasgupta: J. Photochem. Photobiol C: Photochem. Rev. Vol. 6 (2005) p.186.

Google Scholar

[4] B. Neppolian, S. Sakthivel, M. Palanichamy, B. Arabindoo and V. Murugesan: Stud. Surf. Sci. Catal. Vol. 113 (1998) p.329.

Google Scholar

[5] M.M. Haque and M. Muneer: Dyes and Pigments Vol. 75 (2007) p.443.

Google Scholar

[6] B. Neppolian, H.C. Choi, S. Sakthivel, B. Arabindoo and V. Murugesan: Chemosphere Vol. 46 (2002) p.1173.

DOI: 10.1016/s0045-6535(01)00284-3

Google Scholar

[7] A. Sharma, P. Rao, R.P. Mathur and S.C. Ameta: J. Photochem. Photobiol. A Vol. 86 (1995) p.197.

Google Scholar

[8] N. Sobana and M. Swaminathan: Sol. Energ. Mat. Sol. C. Vol. 91 (2007) p.727.

Google Scholar

[9] A. Fernández, G. Lassaletta, V.M. Jiménez, A. Justo, A.R. González-Elipe, J.M. Hermann, H. Tahiri and Y. Ait-Ichou: Appl. Catal. B: Envir. Vol. 7 (1995) p.49.

Google Scholar

[10] K. Tennakone, C.T.K. Tilakaratne and I.R.M. Kotegoda: J. Photochem. Photobiol. A: Chem. Vol. 87 (1995) p.177.

Google Scholar

[11] M.C. Yeber, J. Rodriguez, J. Freer, N. Durán and H.D. Mansilla: Chemosphere Vol. 41 (2000) p.1193.

Google Scholar

[12] P. São Marcos, J. Marto, T. Trindade and J.A. Labrincha: J. Photochem. Photobiol. A Vol. 197 (2008) p.125.

Google Scholar

[13] N. Daneshvar, D. Salari and A.R. Khataee: J. Photochem. Photobiol. A: Chem. Vol. 162 (2004) p.317.

Google Scholar

[14] J. Nishio, M. Tokumura, H.T. Znad and Y. Kawase: J. Hazard. Mater. B Vol. 138 (2006) p.106.

Google Scholar

[15] S.K. Kansal, M. Singh and D. Sud: J. Hazard. Mater. Vol. 141 (2007) p.581.

Google Scholar

[16] W. Stumm and J.J. Morgan, Aquatic Chemistry, Wiley, New York (1981).

Google Scholar

[17] A. Akyol, H.C. Yatmaz and M. Bayramoglu: Appl. Catal. B: Environ. Vol. 54 (2004) p.19.

Google Scholar

[18] B. Neppolian, H.C. Choi, S. Sakthivel, B. Arabindoo and V. Murugesan: J. Hazard. Mater. B Vol. 89 (2002) p.303.

Google Scholar