Structural and Magnetic Properties of Sm(CobalFe0.1Ni0.12Zr0.04B0.04)7.5 Melt Spun Ribbons

Article Preview

Abstract:

We have investigated the structural and magnetic properties of Sm(Co0.70Fe0.1Ni0.12Zr0.04B0.04)7.5 melt spun ribbons. The arc-melted bulk samples have been used to obtain ribbons at 37 up to 55 m/sec while annealing has been performed in argon atmosphere for 30-75 min at 600-870 oC. In as-spun ribbons the hexagonal SmCo7 (TbCu7-type of structure) of crystal structure has been determined from x-ray diffraction patterns, while fcc-Co has been identified as a secondary phase. After annealing, the 1:7 phase of the as-spun ribbons transforms into 2:17 and 1:5 phases. TEM analysis shows a homogeneous nanocrystalline microstructure with average grain size of 30-80 nm. Coercivity values of 15-27 kOe are obtained from hysteresis loops traced at non-saturating fields. The coercivity decreases as temperature increases, but it is high enough to maintain values higher than 5 kOe at 380 oC. The maximum energy product at room temperature increases, as high as 7.2 MGOe, for melt-spun ribbons produced at higher wheel speed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 636-637)

Pages:

404-410

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. F. Liu, Y. Ding, Y. Zhang, D. Dimitrov, F. Zhang, and G. C. Hadjipanayis: J. Appl. Phys. 85 (1999), p.5660.

Google Scholar

[2] W. Tang, Y. Zhang and G .C. Hadjipanayis: J. Appl. Phys. 91 (2002), p.7896.

Google Scholar

[3] A. Yan, A. Bollero, K. H. Muller and O. Gutfleisch: Appl. Phys. Lett. 80 (2002), p.1243.

Google Scholar

[4] I. Panagiotopoulos, T. Matthias, D. Niarchos and J. Fidler: J. Magn. Magn. Mater. 247 ( 2002), p.355.

Google Scholar

[5] Z. Chen, X. Meng-Burany, H. Okumura and G. C. Hadjipanayis: J. Appl. Phys. 87 (2000), p.3409.

Google Scholar

[6] C. Jiang, M. Venkatesan, K. Gallagher and J. M. D. Coey: J. Magn. Magn. Mater. 236 (2001), p.49.

Google Scholar

[7] H. Tang, Y. Liu and D. J. Sellmyer: J. Magn. Magn. Mater. 241 (2002), p.345.

Google Scholar

[8] M. W. Crabbe, H. A. Davies, and R. A. Buckley: IEEE Trans. Magn. 30 (1994), p.696.

Google Scholar

[9] W. Manrakhan, L. Withanawasam, X. Meng-Burany, W. Gong, and G. C. Hadjipanayis: IEEE Trans. Magn. 33 (1997), p.3898.

DOI: 10.1109/20.619608

Google Scholar

[10] W. Gong: J. Appl. Phys. 87 (2000), p.6713.

Google Scholar

[11] J. Zhang, I. Kleinschroth, F. Kuevas, Z. H. Cheng and H. Kronmüller: J. Appl. Phys. 88 (2000), p.6618.

Google Scholar

[12] S. S. Makridis, G. Litsardakis, I. Panagiotopoulos, D. Niarchos, Y. Zhang, and G. C. Hadjipanayis: J. Appl. Phys. 91 (2002), p.7899.

Google Scholar

[13] S. S. Makridis, G. Litsardakis, I. Panagiotopoulos, D. Niarchos, Y. Zhang, and G. C. Hadjipanayis: IEEE Trans. Magn. 38 (2002), p.2922.

DOI: 10.1109/tmag.2002.803068

Google Scholar

[14] M. Q. Huang, Z. Turgut, B. R. Smith, Z. M. Chen, B. M. Ma, S. Y. Chu, J. C. Horwath, and R. T. Fingers: IEEE Trans. Magn. 39 (2003), p.2902.

Google Scholar

[15] R. Gopalan, D.H. Ping, K. Hono: J. Magn. Magn. Mater. 292 (2005), p.150.

Google Scholar

[16] R. Gopalan, X.Y. Xiong, T. Ohkubo: J. Magn. Magn. Mater. 295 (2005), p.7.

Google Scholar

[17] R. Gopalan, D.H. Ping, K. Hono: J. Magn. Magn. Mater. 284 (2004), p.321.

Google Scholar

[18] Robert C O' Hadley: Modern Magnetic Materials (Prinsiples and Applcations), publisher WILEY & SONS (2000).

Google Scholar

[19] S.S. Makridis, I. Panagiotopoulos, I. Tsiaousis, K. Frangis, E. Pavlidou, K. Chrisafis, G. F. Papathanasiou, K. Efthimiadis, G. C. Hadjipanayis and D. Niarchos: J. Magn. Magn. Mater. 320 (2008) p.2322.

DOI: 10.1016/j.jmmm.2008.04.122

Google Scholar