Nitrogen Effects on Optical and Electrical Properties of Amorphous Carbon

Article Preview

Abstract:

Optical and electrical properties amorphous carbon nitride (a-CN) has been investigated on films deposited by reactive R.F. sputtering source with a graphite target. The amorphous carbon nitride samples were prepared under a gas mixture of nitrogen (N2) and /or Argon (Ar).The optical transitions are governed by the  and * electronic state distributions, related to sp2- and sp1-hybridized C and N atoms. Specific lonepair electronic states arise from groups (CN) with sp1-hybridized C atoms, which may form C≡N triple bonds or —N=C=N— longer chains. Photoluminescence spectra show a maximum around 650 nm. Two conduction regimes at high and low temperature are found in a-CN samples. The corresponding activation energies decrease with the increase of target voltage.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 636-637)

Pages:

423-429

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Grill, Diamond Relat. Mater. 8 (1999) 428.

Google Scholar

[2] K.M. Krishma. T. Soga, K. Mukhopadhyay, M. Sharon, M. Umeno, Sol. Energy Mater. Sol. Cells 48 (1997) 25.

Google Scholar

[3] S. M. Mominuzzaman, K. M. Krishna, T. Soga, T. Jimbo, M. Umeno, Jpn. J. Appl. Phys. 38 (1999) 658.

Google Scholar

[4] L. Liu, D. Ma, H. Zheng, X. Li, M. Cheng, X. Bao. Microporous and Mesoporous Materials 110 (2008), 216-222.

Google Scholar

[5] S. R. P. Silva, J. Robertson, G. A. J. Amaratunga, et al., J. Appl. Phys. 81 (1997) 2626.

Google Scholar

[6] G. Fanchini, S.C. Ray, A. Tagliaferro. Diam. & Relat. Mater. 12 (2003) 1084-1087.

Google Scholar

[7] J. Tauc, in Optical Properties of Solids. F. Abels Edition, North Holland, Amsterdam, 1972, p.277. 2 4 6 8 10 12 14 16 18 20 22 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 M503 M508 M502 M517 σσσσD[S. cm -1 ] 1/KT.

DOI: 10.7717/peerj.4623/fig-6

Google Scholar

[8] N.H. Cho, K.M. Krishnan, D.K. Veirs, M.D. Rubin, C.B. Hopper and B. Bhushan, J. Mater. Res., 5 (1990) 2543.

Google Scholar

[9] N. Savvides, J. Appl. Phys., 59 (1986) 4133.

Google Scholar

[10] D.F. Franceshini, C.A. Achete, F. L Freire Jr., Appl. Phys. Lett. 60 (1992) 3229.

Google Scholar

[11] C. Chen and J. Robertson, Carbon 37 (1999), p.839.

Google Scholar

[12] G. Ambrosone, D. K. Basa, U. Coscia, and M. Fathallah, J. of Appl. Phys., 104 (2008) 123520.

Google Scholar

[13] J. Robertson, Philos. Mag. B 66, (1992) 615.

Google Scholar

[14] P. Hammer, N. M. Victoria, F. Alvarez, J. Non-Cryst. Solids 227-230 (1998) 645.

Google Scholar

[15] M. Lejeune, M. Benlahsen, P. Lemoine, Solid State Comm., 135 (2005) 434-439.

Google Scholar

[16] C. Popov, L. M. Zambov, M. F. Plass, W. Kulisch, Thin Solid Films, 377 (2000) 156.

DOI: 10.1016/s0040-6090(00)01316-x

Google Scholar

[17] R. Gharbi, M. B. Karoui, M. Fathallah, E. Tresso, Phil. Mag., 87(2007), 5079-5088.

Google Scholar

[18] G. Fanchini, S.C. Ray, A. Tagliaferro, E. Laurenti, J. Phys. Cond. Matter. 14 (2002) 13231.

Google Scholar

[19] G Fanchini, A. Tagliaferro, N. M. J. Conway, C. Godet, Phys. Rev. B, 66 (2002) 195415.

Google Scholar

[20] S. Kumar, C. Godet, A. Goudovskikh, J. P. kleider, G. Adamopoulos, V. Chu. J. Non-Cryst. Solids 338-340 (2004) 349.

DOI: 10.1016/j.jnoncrysol.2004.02.071

Google Scholar

[21] S. Nitta, N. Takada, K. Sugiyama, T. Itoh, S. Nonomura. J. Non-Cryst. Solids, 227-230 (1998) 665.

Google Scholar