PL Properties of SiOx Obtained by HFCVD Technique

Article Preview

Abstract:

In this work, SiOx films were deposited on crystalline silicon substrates and their microstructure and photoluminescent properties are reported. The films were deposited by the Hot Filament Chemical Vapor Deposition (HFCVD) technique using molecular hydrogen (H2) and silica glass (SiO2) as reactants. The H2 becomes atomic hydrogen when is flowed through a tungsten wire heated at 2000 °C. According to the chemical reaction, the atomic hydrogen reacts with the solid source (SiO2) and a SiOx film on a substrate is obtained. From FTIR and room temperature photoluminescence measurements can be concluded that, regions with different average size of silicon nano-clusters in the oxide are formed and they probably are the responsible for the light emission in the visible range.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 636-637)

Pages:

444-449

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Jia-Min Shieh, Yi-Fan Lai and Wei-Xin Li, Appl. Phys. Lett., 90, 051105 (2007).

Google Scholar

[2] G. Romero Paredes, R. Peña-Sierra y G. Castillo-Cabrera, Revista Mexicana de Física, 48(2) 92 (2002).

Google Scholar

[3] J. Bao, M. Tabbal, T. Kim, S. Charnvanichborikarn, J.S. Williams, M.J. Aziz and F. Capasso, Optics Express 15 , 6727 (2007).

DOI: 10.1364/oe.15.006727

Google Scholar

[4] K. Luteková, K. Dohnalová, V. Svrcek, I. Pelant, J. P. Likforman, O. Crégut, P. Gilliot and B. Hönerlage, Appl. Phys. Lett., 84(17) (2004) 3280.

DOI: 10.1063/1.1723692

Google Scholar

[5] L. T. Canham, Appl. Phys. Lett., 57 (1990) 1046.

Google Scholar

[6] V. Vicinguerra, G. Franzo, F. Priolo, F. Iacona and C. Spinella, J. Appl. Phys., 87 (2000) 8165.

Google Scholar

[7] D. Nesheva, C. Raptis, A. Perakis, I. Beneva, Z. Aneva, Z. Levi, Z. Alexandrova and H. Hofmeister, J. of Appl. Phys, 92 (2002) 4678.

DOI: 10.1063/1.1504176

Google Scholar

[8] C. Garcia, B. Garrido, P. Pellegrino, R. Ferre, J. A. Moreno, J. R. Morante, L. Pavesi, M. Cazzanelly, Appl. Phys. Lett., 82 (2003) 1595.

DOI: 10.1063/1.1558894

Google Scholar

[9] F. Flores-Gracia, M. Aceves, J. Carrillo, C. Dominguez, C. Falcony, Superficies y Vacio, 18 (2005) 7.

Google Scholar

[10] M. Molinari, H. Rinnert, M. Vergnat, Appl. Phys. Lett., 82 (2003) 3877.

Google Scholar

[11] P. Mutti, G. Ghislotti, S. Bertoni, L. Bonoldi, G. F. Cerofolini, L. Meda, E. Grilli, M. Guzzi, Appl. Phys. Lett., 66 (1995) 851.

DOI: 10.1063/1.113408

Google Scholar

[12] D. Berman, M. Aceves, A. Gallegos, A. Morales, L. R. Berriel, J. Carrillo, F. Flores, C. Falcony, C. Dominguez, A. Llobera, M. Riera and J. Pedraza, Phys. Stat. Solidi I S1 (2004) S1-S5.

DOI: 10.1002/pssc.200304864

Google Scholar

[13] M. L. Brongersma, A. Polman, K. S. Min, E. Boer, T. Tambo and H. A. Atwater, Appl. Phys. Lett., 72 (1998) 2577.

DOI: 10.1063/1.121423

Google Scholar

[14] Shimizu-Iwayama T., Yoichi T., Atsushy K., Motonory T., Setsuo N., Kasuo S., Thin Sol. Films, 296 (1996) 104.

Google Scholar

[15] U. Kahler and H. Hofmeister, Appl. Phys. Lett., 75 (1999) 641.

Google Scholar

[16] Gong-Ru Lin, Chung-Jung, Chi-Kuan Lin, Lin-Jen Chou and Lu-Lun Chueh, J. Appl. Phys., 97 (2005) 094306.

Google Scholar

[17] D. Pacifici, E. C. Moreira, G. Franzo, V. Martorino, and F. Priolo, F. Iacona, Phys. Rev. B, 65, (2002) 144109.

Google Scholar

[18] H. G. P. Lewis, T. B. Casserly and K. K. Gleason, J. Electrochem. Soc., 148 (12) (2001) F212.

Google Scholar

[19] T. Díaz-Becerril, G. García-Salgado, A. Coyopol, H. Juárez and E. Rosendo, and I. oliva, Materials Sci. and Eng. B, in evaluation for publication (2009).

Google Scholar

[20] G. García-Salgado, Master Tesis, MDS-ICUAP, Puebla, Mexico, December (1999).

Google Scholar

[21] A. Coyopol, Master tesis, Posgrado en Dispositivos Semiconductores CIDS-ICUAP, Puebla, Mexico, July (2008).

Google Scholar

[22] P. Salazar, F. Chavez, F. Silva-Andrade, A. V. Ilinskii and N. Morales, Modern Phys. Lett., 15 (17-19) 756.

Google Scholar

[23] M. Amaral, F. J. Oliveira, M. Belmonte, A. J. S. Fernandes, F. M. Costa and R. F. Silva, Diamond and Related Materials, 13(4-8) (2004) 643.

Google Scholar

[24] S. V. Deshpande, J. L. Dupui and E. Gulari, Appl. Phys. Lett., 61 (1992) 1420.

Google Scholar

[25] S. V. Deshpande and E. Gulari, Appl. Phys. Lett., 77(12) (1995) 6534.

Google Scholar

[26] G. Lucovsky and D. J. Tsu, J. Vac. Sci. Technol. A, 5(4) (1987) 2231.

Google Scholar

[27] A. Morales, J. Barreto, C. Domínguez, M. Riera, M. Aceves, J Carrillo, Physica E, 38 (2007) 54.

Google Scholar

[28] L. N. Dinh, L. L. Chase, M. Balooch, W. J. Siekhaus and F. Wooten, Phys. Rev. B, 54 (1996) 5029.

Google Scholar

[29] T. Shimizu-Iwayama, N. Kurumado, D. E. Hole, and P. D. Townsend, J. Appl. Phys., 83 (1998) 6018.

Google Scholar

[30] Fabio Iacona, Giorgia Franzò and Conrrado Spinella, J. Appl. Phys. 87(3) (2000) 1295.

Google Scholar

[31] Z. Yu, M. Aceves, C. Falcony, C. Dominguez, A. Llovera and A. Morales-Acevedo, Superficies y Vacío, 17(1) (2004) 1.

Google Scholar

[32] A.V. Dvurechensky, F.L. Edelman and I.A. Ryazantsev, Thin Sol. Films, 91 (1982) L55.

DOI: 10.1016/0040-6090(82)90127-4

Google Scholar