Effect of Annealing on the Optical and Structural Properties of TiO2 RF Sputtered Thin Films

Article Preview

Abstract:

Titanium dioxide (TiO2) thin films were prepared by RF magnetron sputtering technique at an argon flow rate of 4.9 sccm and room temperature during 4 h. These films were deposited on pyrex substrates with an RF power of 300 W and annealed at different temperatures (500, 600, 700 and 800 °C). The optical and structural properties were studied by spectrophotometry and X ray Diffractometry respectively. The obtained results show an amorphous structure for the unheated TiO2 films and an apparition of an anatase phase after the annealing process. The transmittance is increased with an annealing of 500°C from 45 to 80 % in the visible and near-infrared regions. The direct band gap, refractive index, extinction coefficient and grain size were investigated. The reflection in the visible range for a silicon (Si(p)) substrate covered by TiO2 thin films is decreased to be about 20%. The results of this work suggest that the variation of the annealing temperature allow the control of the physical properties of TiO2 thin films as antireflective coating for silicon solar cells.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 636-637)

Pages:

450-455

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Sunada, Y. Kikuchi, K. Hashimoto and A. Fujishima: Environ. Sci. Technol. Vol. 32 (1998), p.726.

Google Scholar

[2] H. Wang, T. Wang and P. Xu: J. Mater. Sci. Mater. Electron Vol. 9 (1998), p.327.

Google Scholar

[3] H. Chun, W. Yizhong and T. Hongxiao: Appl. Catal. B Environ. Vol. 35(2001), p.95.

Google Scholar

[4] G.P. Burns: J. Appl. Phys. Vol. 65 (1989), p. (2095).

Google Scholar

[5] E. Stathatos, D. Tshiourvas and P. Lianos: Colloids Surf. Vol. A 149 (1999), p.49.

Google Scholar

[6] J.Y. Gan, Y.C. Chang and T.B. Wu: Appl. Phys. Lett. Vol. 72 (1998), p.332.

Google Scholar

[7] D. Bersani, P.P. Lottici and X.Z. Ding: Appl. Phys. Lett. Vol. 72 (1998), p.73.

Google Scholar

[8] J.E.G.J. Wijnhoven and W.L. Los: Science Vol. 281 (1998), p.802.

Google Scholar

[9] Q. Fan, B. McQuillin, A.K. Ray, M.L. Turner and A.B. Seddon: J. Phys. D: Appl. Phys. Vol. 33 (2000), p.2683.

Google Scholar

[10] K. Pomoni, A. Vomvas and Chr. Trapalis: Thin Solid Films Vol. 479 (2005), P. 160.

DOI: 10.1016/j.tsf.2004.12.005

Google Scholar

[11] X. -P. Wang, Y. Yu, X. -F. Hu and L. Gao: Thin Solid Films Vol. 371 (2000), p.148.

Google Scholar

[12] Z. Qinnan, L. Baoshun, Z. Xiujian et al.: Mater. Eng. Vol. 32 (2003), p.339.

Google Scholar

[13] P. Zeman and S. Takabayashi: Surf. Coat. Technol. Vol. 153 (2002), p.93.

Google Scholar

[14] Ya-Qi Hou, Da-Ming Zhuang, Gong Zhang, Ming Zhao and Min-Sheng Wu: Applied Surface Science Vol. 218 (2003), p.97.

Google Scholar

[15] Dwight R. Acosta, Arturo I. Martinez, Alcidez A. López and Carlos R. Magaña: Journal of Molecular Catalysis A: Chemical Vol. 228 (2005), p.183.

Google Scholar

[16] H. Natsuhara, K. Matsumoto, N. Yoshida, T. Itohb, S. Nonomuraa, M. Fukawa and K. Sato: Solar Energy Materials & Solar Cells Vol. 90 (2006), p.2867.

DOI: 10.1016/j.solmat.2006.05.001

Google Scholar

[17] H. Natsuhara, K. Matsumoto, N. Yoshida, T. Itoh, S. Nonoura, M. Fukawa and K. Sato, in: Technical Digest of 14th Internaional Photovoltaic Science and Engineering Conference, Bangkok, Thailand (2003), p.307.

Google Scholar

[18] D. Cullity, Elements of X-Ray Diffraction, 2nd edition, Addison-Wesley, Reading, (1978).

Google Scholar

[19] H.P. Deshmukh, P.S. Shinde and P.S. Patil: Materials Science and Engineering: B, Vol. 130 (2006), p.220.

Google Scholar

[20] S. Hwakim and C.K. Hwangbo: Thin Solid Films, Vol. 475 (2005) p.155.

Google Scholar

[21] B.R. Sankapal, M. Ch. Lux-Steiner and A. Ennaoui : Appl. Surf. Sci., Vol. 239 (2005), p.165.

Google Scholar

[22] L. Miao, P. Jin, K. Kaneko, A. Terai, N. Nabatova-Gabain and S. Tanemura : Appl. Surf. Sci, Vol. 212-213 (2003), p.255.

DOI: 10.1016/s0169-4332(03)00106-5

Google Scholar

[23] M. H. Habibi, N. Talebian and J. H. Choi : Dyes and Pigments, Vol. 73 (2007), p.103.

Google Scholar

[24] S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai and N. Nabatova-Gabain : Appl. Surf. Sci. Vol. 654 (2003), p.212.

DOI: 10.1016/s0169-4332(03)00015-1

Google Scholar

[25] J. Tauc, Optical Properties of Solids, edited by F. Abeles, North-Holland, Amsterdam, (1972).

Google Scholar

[26] R. Swanepoel: J. Phys. E: Sci. Instrum. Vol. 16 (1983), p.1214.

Google Scholar

[27] K. Prabakar, S. venkatachalam, Y.L. Jeyachandass, Sa. K. Narayandass and D. Mangalaraj: Solar Energy & Solar Cells Vol. 81 (2004) p.1.

DOI: 10.1016/j.solmat.2003.08.008

Google Scholar

[28] J. Tauc, Optical Properties of Solids, edited by F. Abeles, North Holand, Amsterdam, (1970).

Google Scholar

[29] C.V.R. Vasantkumar and A. Mansingh: Seventh IEEE International Symposium on Application of Ferroelectrics, IEEE, New York, (1990), p.713.

Google Scholar

[30] D. P Arndt, R.M.A. Azzam, J.M. Bennet, et al.: Appl. Sur. Sci. Vol. 65 (1993), p.227.

Google Scholar

[31] J. Rodriguez, M. Gomez, J. Ederth, G.A. Niklasson and C.G. Granqvist, Thin Solid Films Vol 365 (2000), p.119.

Google Scholar

[32] A.A. Akl , H. Kamal and K. Abdel-Hady: Applied Surface Science Vol. 252 (2006), p.8651.

Google Scholar

[33] A. Bendavid, P.J. Martin and H. Takikawa: Thin Solid Films Vol. 360 (2000), p.241.

Google Scholar

[34] A. Amassian, P. Desjardins and L. Martinu: Thin Solid Films Vol. 447-448 (2004), p.40.

Google Scholar

[35] M.D. Stamate: Appl. Surf. Sci. Vol. 218 (2003), p.317.

Google Scholar