Effect of Si on Mechanical Property of Galvannealed Dual Phase Steel

Abstract:

Article Preview

The mechanical properties of galvannealed dual phase steels bearing Si were investigated, and then the effect of Si on work hardening behavior during tensile deformation was discussed. Both tensile strength and yield strength were increased with increasing Si content, especially increasing ratio of tensile strength was larger than that of yield strength. On the other hand, the decrease of uniform elongation was very small with increasing Si content. Therefore, tensile strength and total elongation balance was improved by Si addition. High Si (1.2%Si) steel exhibited higher work hardening rate than low Si (0.01%Si) steel in all strain region. Dislocation cell structures were observed at 8% tensile strain in low Si steel, while dislocation cell structures were scarcely observed and instead, tangled dislocations were dominantly observed in high Si steel. Furthermore, high Si steel exhibited higher the increasing ratio of dislocation density in ferrite during tensile deformation than low Si steel. These results indicated that the formation of dislocation cell structure was retarded by Si addition, which led to the increase of work hardening rate and resulted in the improvement of tensile strength and total elongation balance.

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Main Theme:

Edited by:

T. Chandra, N. Wanderka, W. Reimers , M. Ionescu

Pages:

3260-3265

DOI:

10.4028/www.scientific.net/MSF.638-642.3260

Citation:

S. Hironaka et al., "Effect of Si on Mechanical Property of Galvannealed Dual Phase Steel", Materials Science Forum, Vols. 638-642, pp. 3260-3265, 2010

Online since:

January 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.