Roping Phenomena in Aluminium Alloy 6016: A Microtextural Investigation

Article Preview

Abstract:

Roping was investigated in two 6016 aluminium alloys that exhibit different levels of susceptibility to its occurrence. The level of roping is lower, as manifested by the less pronounced (roping) lines on the surface, in the GR material compared to the BR case. Through-process characterization of GR and BR materials by means of electron backscatter diffraction (EBSD) reveals similarities in the grain size, (grain) orientation texture and the spatial distribution of {100} <001> Cube grains up to, but not including the T4 state. Cube grains in the T4 state are spatially banded in the BR material but more uniformly distributed in the GR case. It was found that the thermo-mechanical treatments prior to the T4 state account for the difference in spatial distributions of Cube grains and hence, the different roping behaviours exhibited by these materials.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

396-400

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Raabe, M. Hölscher, M. Dubke, F. Reher, K. Lücke: Mater. Sci. Forum Vol. 157-162 (1994), p.1039.

DOI: 10.4028/www.scientific.net/msf.157-162.1039

Google Scholar

[2] H.M. Kim, J.A. Szpunar: Mater. Sci. Forum Vol. 157-162 (1994), p.753.

Google Scholar

[3] H-J. Shin, J-K. An, S.H. Park, D.N. Lee: Acta Mater. Vol. 51 (2003), p.4693.

Google Scholar

[4] C.S. da Costa Viana, F.S. Candido, A.L. Pinto: Mater. Sci. Forum Vol. 495-497 (2005), p.173.

Google Scholar

[5] N.J. Wittridge, R.D. Knutsen: Mater. Sci. Eng. A Vol. 269 (1999), p.205.

Google Scholar

[6] P.D. Wu, H. Jin, Y. Shi, D.J. Lloyd: Mater. Sci. Eng. A Vol. 423 (2006), p.300.

Google Scholar

[7] P.D. Wu, D.J. Lloyd, Y. Huang: Mater. Sci. Eng. A Vol. 427 (2006), p.241.

Google Scholar

[8] G.J. Baczynski, R. Guzzo, M.D. Ball, D.J. Lloyd: Acta Mater. Vol. 48 (2000), p.3361.

Google Scholar

[9] O. Engler, E. Brünger: Mater. Sci. Forum Vol. 396-402 (2002), p.345.

Google Scholar

[10] P.D. Wu, D.J. Lloyd, A. Bosland, H. Jin, S.R. MacEwen: Acta Mater. Vol. 51 (2003), p. (1945).

Google Scholar

[11] H. Jin, D.J. Lloyd: Mater. Sci. Eng. A Vol. 403 (2005), p.112.

Google Scholar

[12] K-I. Ikeda, T. Yoshihara, N. Takata, H. Nakashima: Mater. Sci. Forum Vol. 558-559 (2007), p.71.

Google Scholar

[13] T.A. Bennett, R.H. Petrov, L.A.I. Kestens: Cer. Trans. Vol. 201 (2008), p.373.

Google Scholar

[14] O. Engler, J. Hirsch: Mater. Sci. Eng. A Vol. 336 (2002), p.249.

Google Scholar

[15] S. Li, S. -B. Kang, H. -S. Ko: Metall. and Mater. Trans. A Vol. 31A (2000), p.99.

Google Scholar

[16] M. -Y. Huh, O. Engler: Mater. Sci. Eng. A Vol. 308 (2001), p.74.

Google Scholar

[17] P. Van Houtte, S.Y. Li, M. Seefeldt, L. Delannay: Int. J. of Plasticity Vol. 21 (2005), p.589.

Google Scholar

[18] L.S. Tóth, P. Van Houtte: Textures Microstruct. Vol. 19 (1992), p.229.

Google Scholar

[19] P. van Houtte, MTM-FHM Software Version, 2 nd Edition Leuven, M-KU (1995).

Google Scholar

[20] W.C. Liu, C. -S. Man, J.G. Morris: Scripta Mater. Vol. 45 (2001), p.807.

Google Scholar