Mechanical Behavior Study of Plasma Sprayed Hydroxyapatite Coatings onto Ti6Al4V Substrates Using Scratch Test

Article Preview

Abstract:

Mechanical behavior and fracture mechanisms of plasma sprayed hydroxyapatite coatings on Ti-6Al-4V substrate were assessed taking into consideration two variables: the coating thickness and the substrate roughness. The results show that the specimens having a substrate arithmetic average roughness parameter Ra = 2.29 µm is favorable with respect to Ra = 1.23 µm. For coating thickness above 105 µm, cracks can be observed in the coating/substrate interface and the higher critical load Pc2 (used generally in comparative evaluation of adherence) decreases. A 90 µm coating thickness sprayed on a substrate having an arithmetic average roughness parameter Ra equal to 2.29 µm seems to be the best compromise between microstructure, mechanical resistance (high critical loads and fairly good contact quality) and long term stability in the physiological medium (low dissolution rate) for an orthopedic application.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

641-646

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Liang, B. Shi, A. Fairchild, T. Cale: Vac. 73 (2004), p.317.

Google Scholar

[2] I.S. Lee, H. E Kim, S.Y. Kim: Surf. Coat. Technol. 131 (2000), p.181.

Google Scholar

[3] L. Fu, K.A. Khor, J.P. Lim: Surf. Coat. Technol. 140 (2001), p.263.

Google Scholar

[4] Z.S. Luo, F.Z. Cui, Q.L. Feng, H.D. Li, X.D. Zhu, M. Spector: Surf. Coat. Technol. 131 (2000), p.192.

Google Scholar

[6] T.N. Kim, Q.L. Feng, Z.S. Luo, F.Z. Cui, J.O. Kim: Surf. Coat. Technol. 99 (1998), p.20.

Google Scholar

[7] W. Suchanek, M. Yoshimura: J. Mater. Res. 13 (1998), p.94.

Google Scholar

[8] A. Benhamghader, B. Farsadzadeh, D. Najjar, A. Iost: Biomedical Engineering 2006 (IFMBE Proceedings, Malaysia 2006).

Google Scholar

[9] A. Darbeïda, J. Von Stebut: Tribologie et Ingénierie des Surfaces, (SIRPE, Paris, 1996).

Google Scholar

[10] J. Valli, U. Mäkelä, A. Matthews, V. Murawa: J. Vac. Sci. Technol. A3 (1985), p.2411.

Google Scholar

[11] A. Cavaleiro, M.T. Vieira: Mater. Sci. Eng. A140 (1991), p.631.

Google Scholar

[12] S.J. Bull, D.S. Rickerby: Br. Ceram. Trans. 88 (1989), p.177.

Google Scholar

[13] C.Y. Yang, B.C. Wang, E. Chang, J.D. Wu: J. Mater. Sci. Mater. Med. 6 (1995), p.249.

Google Scholar

[14] K.A. Khor, P. Cheang, Y. Wang: JOM 49 (1997), p.51.

Google Scholar

[15] P. Filip, R. Melicharek, A.C. Kneissl, K. Mazanec: Z. Mettallkd. 88 (1997), p.131.

Google Scholar

[16] E. Park, R.A. Condrate, D.T. Hoelzer, G.S. Fischman, J. Mater. Sci. Mater. Med. 9 (1998), p.643.

Google Scholar

[17] Y. Fu, A.W. Batchelor, Y. Wang, K.A. Khor: Wear 217 (1998), p.132.

Google Scholar

[18] Y.C. Tsui, C. Doyle, T.W. Clyne: Biomaterials 19 (1998), p. (2015).

Google Scholar

[19] M. Levit, I. Grimberg, B.Z. Weiss: Mater. Sci. Eng. A206 (1996), p.30.

Google Scholar

[20] Y.C. Yang, E. Chang: Biomaterials 22 (2001), p.1827.

Google Scholar

[21] A.J. Perry: Thin Solid Films 107 (1983), p.167 and Thin Solid Films 78 (1981), p.77.

Google Scholar

[22] N. Stephanopoulos, V. Bellido-Gonzalez, B. Hopper, D.G. Teer: Tribologie et Ingénierie des Surfaces, (SIRPE, Paris, 1996).

Google Scholar