Fatigue and Fretting Fatigue Behavior of Metallic Biomaterials

Abstract:

Article Preview

A fretting fatigue test method in a simulated body fluid is shown to evaluate fatigue properties of metallic materials which are used in the orthopaedics field. Next, fatigue/fretting fatigue behavior in a simulated body fluid is given for 316L stainless steel, Ti-6% Al-4% V alloy, pure Ti for industrial use and Co-Cr-Mo alloy. Finally, we discuss the relationship between the tensile strength and the fatigue strength/fretting fatigue strength of metallic biomaterials at 107 cycles in air and in a simulated body fluid. For all of the biomaterials tested, the fatigue strength at 107 cycles is similar in air and in a simulated body fluid. The fatigue strength is closely correlated to the tensile strength: The fatigue strength increases with increasing tensile strength. However, a correlation is not observed between the fretting fatigue strength at 107 cycles and the fatigue strength or the tensile strength.

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Main Theme:

Edited by:

T. Chandra, N. Wanderka, W. Reimers , M. Ionescu

Pages:

618-623

DOI:

10.4028/www.scientific.net/MSF.638-642.618

Citation:

N. Maruyama "Fatigue and Fretting Fatigue Behavior of Metallic Biomaterials", Materials Science Forum, Vols. 638-642, pp. 618-623, 2010

Online since:

January 2010

Authors:

Export:

Price:

$38.00

[1] T. Sasada, Y. Tsukamoto and K. Mabuchi: in Biotribology - Friction and lubrication of joints - , Sangyo Tosho, Tokyo (1988), p.123.

[2] L. L. Hench and F. C. Ethridge: Adv. Biomed. Eng, Vol. 5 (1975), p.35.

[3] ASTM Standard F1801-97, Standard Practice for Corrosion Fatigue Testing of Metallic Implant Materials (1997).

[4] ASTM Standard F897-84, Standard Test Method for Measuring Fretting Corrosion of Osteosynthesis Plates and Screws (1984).

[5] K. Nakazawa, M. Sumita and N. Maruyama: Standardization of Fretting Fatigue Test Methods and Equipment, ASTM STP 1159, (1992), p.115.

[6] R. B. Waterhouse: in Fretting corrosion, (Japanese Translation by J. Sato), Yokendo, Tokyo (1984), p.191.

[7] A. Yamamoto, T. Kobayashi, N. Maruyama, K. Nakazawa and M. Sumita: J. Japan Inst. Metals, Vol. 59 (1995), p.463.

[8] I. Nishioka and K. Hirakawa: Blletin of JSME, Vol. 52 (1969), p.692.

[9] K. Nakazawa, M Sumita and N. Maruyama: J Japan Insr. Merals, Vol. 63, (1999), p.1600.

[10] N. Maruyama, T. Kobayashi and M. Sumita: J Japan. Soc. Biolllater. Vol. 13, (1995), p.14.

[11] N. Maruyama, T. Kobayashi, K. Nakazawa, M. Sumita and M. Sato: J. Japan. Soc. Biomater., Vol. 17, (1999), p.172.

[12] N. Maruyama, K. Nakazawa, M. Sumita and M. Sato: J Japan. Soc. Biolllater. Vol. 18, (2000), p.17.

In order to see related information, you need to Login.