The Application of the Fundamental Parameters Approach as Implemented in TOPAS to Divergent Beam Powder Diffraction Data

Abstract:

Article Preview

The fundamental parameters approach (FPA) as implemented in TOPAS is investigated for analyses of conventional X-ray powder diffraction (XRPD) data. The FPA involves the convolution of a series of models, each one constituting an individual contribution to the geometric portion of the instrument profile function (IPF). Parameters within each model are refined by least squares to yield a presumably accurate description of the experiment. If one wishes to interrogate the functionality of said models, a diffractometer wherein the uncertainties in optical character are minimized is required. To this end, a diffractometer was built at NIST which featured conventional divergent beam optics in conjunction with a well aligned, stiff, and accurate goniometer assembly. Initial results indicated that the detector arm was flexing; this problem has been addressed with the fabrication and installation of a new arm and counterweight assembly. Data collected from NIST Standard Reference Material (SRM) 660a, lanthanum hexaboride, are analyzed using the FPA method to yield conclusions on the validity of the models with respect to shape and position of the diffraction profiles.

Info:

Periodical:

Edited by:

Paolo Scardi and Robert E. Dinnebier

Pages:

201-219

DOI:

10.4028/www.scientific.net/MSF.651.201

Citation:

J. P. Cline et al., "The Application of the Fundamental Parameters Approach as Implemented in TOPAS to Divergent Beam Powder Diffraction Data", Materials Science Forum, Vol. 651, pp. 201-219, 2010

Online since:

May 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.